6533b854fe1ef96bd12af5ec
RESEARCH PRODUCT
Diquark correlations in hadron physics: Origin, impact and evidence
Bogdan WojtsekhowskiAndrew PuckettY. ChenC. MezragM. DingG. D. CatesP. RossiR. W. GotheM. A. BedollaGiovanni SalmèS. N. SyritsynS. N. SyritsynJorge SegoviaJorge SegoviaChen ChenE. Tomasi-gustafssonWilliam BrooksMakoto TakizawaMakoto TakizawaCraig D. RobertsM. Yu. BarabanovA. PilloniElena SantopintoJacopo FerrettiSimonetta LiutiTanja HornTanja HornE. CisbaniRolf EntP. WeinGernot Eichmannsubject
Nuclear TheoryHigh Energy Physics::LatticeHadronNuclear Theoryhiukkasfysiikka01 natural sciencesHigh Energy Physics - ExperimentBroad spectrumHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Hadron physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)Nuclear ExperimentQuantum chromodynamicsPhysicsDiquark correlationsBaryon spectra and structureHigh Energy Physics - Lattice (hep-lat)symmetry breaking: chiralDyson-Schwinger equationsDiquarkbound statediquark: correlationHigh Energy Physics - PhenomenologyQuark modelsChiral symmetry breakingPhenomenology (particle physics)QuarkNuclear and High Energy PhysicsParticle physics[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]FOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]diquark correlationsNuclear Theory (nucl-th)High Energy Physics - Latticehadron physics0103 physical sciencesquantum chromodynamics010306 general physicsBaryon spectra and structure; Diquark correlations; Dyson-Schwinger equations; Lattice quantum chromodynamics; Quantum chromodynamics; Quark modelskvarkit010308 nuclear & particles physics[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]hadron spectroscopyHigh Energy Physics::PhenomenologyLattice quantum chromodynamicsform factor: electromagnetic[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experimentdescription
The last decade has seen a marked shift in how the internal structure of hadrons is understood. Modern experimental facilities, new theoretical techniques for the continuum bound-state problem and progress with lattice-regularised QCD have provided strong indications that soft quark+quark (diquark) correlations play a crucial role in hadron physics. For example, theory indicates that the appearance of such correlations is a necessary consequence of dynamical chiral symmetry breaking, viz. a corollary of emergent hadronic mass that is responsible for almost all visible mass in the universe; experiment has uncovered signals for such correlations in the flavour-separation of the proton's electromagnetic form factors; and phenomenology suggests that diquark correlations might be critical to the formation of exotic tetra- and penta-quark hadrons. A broad spectrum of such information is evaluated herein, with a view to consolidating the facts and therefrom moving toward a coherent, unified picture of hadron structure and the role that diquark correlations might play.
year | journal | country | edition | language |
---|---|---|---|---|
2020-08-17 |