0000000000970613
AUTHOR
Karl Wandner
Plasmonic Nanosensors for the Label-Free Imaging of Dynamic Protein Patterns.
We introduce a new approach to monitor the dynamics and spatial patterns of biological molecular assemblies. Our molecular imaging method relies on plasmonic gold nanoparticles as point-like detectors and requires no labeling of the molecules. We show spatial resolution of up to 5 μm and 30 ms temporal resolution, which is comparable to wide-field fluorescence microscopy, while requiring only readily available gold nanoparticles and a dark-field optical microscope. We demonstrate the method on MinDE proteins attaching to and detaching from lipid membranes of different composition for 24 h. We foresee our new imaging method as an indispensable tool in advanced molecular biology and biophysic…
Intensity-Based Single Particle Plasmon Sensing.
Plasmon sensors respond to local changes of their surrounding environment with a shift in their resonance wavelength. This response is usually detected by measuring light scattering spectra to determine the resonance wavelength. However, single wavelength detection has become increasingly important because it simplifies the setup, increases speed, and improves statistics. Therefore, we investigated theoretically how the sensitivity toward such single wavelength scattering intensity changes depend on the material and shape of the plasmonic sensor. Surprisingly, simple equations describe this intensity sensitivity very accurately and allow us to distinguish the various contributions: Rayleigh…
Plasmonic Nanosensors for the Label-Free Imaging of Dynamic Protein Patterns
Additional data to support our work on "Plasmonic Nanosensors for the Label-Free Imaging of Dynamic Protein Patterns" published in the Journal of Physical Chemistry Letters (DOI: 10.1021/acs.jpclett.0c01400) Movies: - S1: MinVideo_EColi.mp4 - S2: MinVideo_DOPC_DOPG_CL.mp4 - S3: MinVideo_DOPC_DOPG.mp4 Audio Files: - S1: MinSound_EColi.mp4 - S2: MinSound_DOPC_DOPG_CL.mp4 - S3: MinSound_DOPC_DOPG.mp4