0000000000986203
AUTHOR
Yu. A. Mastrikov
First principles calculations of oxygen vacancy formation and migration in mixed conducting Ba0.5Sr0.5Co1−yFeyO3−δ perovskites
Abstract First-principles supercell calculations of oxygen vacancies in the Ba 0.5 Sr 0.5 Co 1− y Fe y O 3− δ (BSCF) perovskites are presented. The density of states is determined for different iron content and oxygen vacancy concentrations, and the characteristic differences for Co and Fe are discussed. We analyze the dependences of the defect (oxygen vacancy) formation and migration energies on the Fe content and compare the calculated properties with those of related LaCoO 3 and LaFeO 3 perovskites.
The Effect of Oxygen Vacancies on the Atomic and Electronic Structure of Cubic ABO3Perovskite Bulk and the (001) Surface:Abinitio Calculations
We employed the hybrid DFT-LCAO and GGA-PW approaches as implemented in the CRYSTAL and VASP codes, respectively, for large supercell calculations of neutral O vacancies with trapped electrons (known as F centers) in the bulk and on the (001) surface of three cubic perovskite crystals (SrTiO 3 , PbTiO 3 , and PbZrO 3 ). The local lattice relaxation, charge redistribution, and positions of defect energy levels within the band gap are compared for three perovskites under study. We demonstrate how the difference in chemical composition of host materials leads to quite different defect properties.
First-principles calculations of the atomic and electronic structure ofFcenters in the bulk and on the (001) surface ofSrTiO3
The atomic and electronic structure, formation energy, and the energy barriers for migration have been calculated for the neutral O vacancy point defect F center in cubic SrTiO3 employing various implementations of density functional theory DFT. Both bulk and TiO2-terminated 001 surface F centers have been considered. Supercells of different shapes containing up to 320 atoms have been employed. The limit of an isolated single oxygen vacancy in the bulk corresponds to a 270-atom supercell, in contrast to commonly used supercells containing 40– 80 atoms. Calculations carried out with the hybrid B3PW functional show that the F center level approaches the conduction band bottom to within 0.5 eV…
First‐principles modelling of defects in advanced nuclear fuels
In this paper we present and discuss the results of first first-principle modelling of point defects in nitride nuclear fuels. Calculations have been performed using the VASP computer code combined with supercells containing up to 250 atoms. The effective atomic charges, the electronic density redistribution, atomic displacements around U and N vacancies and their formation energies are discussed. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
First principles calculations of (Ba,Sr)(Co,Fe)O3−δ structural stability
Abstract First principles total-energy calculations of an ideal BSCF perovskite-type solid solution, the crystal containing basic point defects, and a set of relevant solid–solid solutions are presented. Our DFT modeling of defects (Frenkel, Schottky and cation exchange) and disordering in the BSCF perovskites reveals that the material tends to decompose at relatively low temperatures into a mixture of new perovskite and oxide phases. These new phases are likely to appear at grain boundaries and surface interfaces. This instability is predicted to negate advantages of fast oxygen transport chemistry and impede the applicability of BSCF-based SOFC and ceramic permeation membranes. We discuss…
Atomic scale DFT simulations of point defects in uranium nitride
Atomic scale density functional calculations are used to predict the behaviour of defects in uranium mononitride (UN). Two different density functional codes (VASP and CASTEP) were employed with supercells containing from 8 to 250 atoms (providing a significant range of defect concentrations). Schottky and nitrogen Frenkel point defect formation energies, local lattice relaxations and overall lattice parameter change, as well as the defect induced electronic density redistribution, are discussed.
Nanosession: Ionics - Redox Kinetics, Ion Transport, and Interfaces
Water interaction with perfect and fluorine-doped Co3O4 (100) surface
Abstract We report the results of theoretical investigations of water adsorption on undoped and fluorine-doped Co3O4 (100) surface by means of the plane-wave periodic density functional theory (DFT) calculations combined with the Hubbard-U approach and statistical thermodynamics. We discuss the effect of fluorine-doping of the Co3O4 (100) surface and calculated oxygen evolution reaction overpotential based on the Gibbs free-energy diagram of undoped and F-doped surfaces.
First-Principles Modelling of N-Doped Co3O4
The project Nr. AP05131211 “First Principles Investigation on Catalytic Properties of N-doped Co3O4” is supported by the Ministry of Education and Science of the Republic of Kazakhstan within the framework of the grant funding for scientific and (or) scientific and technical research for 2018-2020. The authors thank T. Inerbaev and A. Popov for fruitful discussions and valuable suggestions. Yu.M. thanks M.Putnina for the technical assistance in preparation of the manuscript.
DFT modelling of oxygen adsorption on the Ag-doped LaMnO3 (001) surface
This study was partly financed by the State Education Development Agency of the Republic of Latvia via the Latvian State Scholarship (A.A.) and Latvia-Ukraine Project (Grant LV-UA/2018/2 to E.K.). The work of T.I. is performed under the state assignment of IGM SB RAS. Also, this research was partly supported by the Ministry of Education and Science of the Republic of Kazakhstan in the framework of the scientific and technology Program BR05236795 ‘‘Development of Hydrogen Energy Technologies in the Republic of Kazakhstan’’. The authors thank M. Sokolov for technical assistance and valuable suggestions.
Atomic, electronic and thermodynamic properties of cubic and orthorhombic LaMnO3 surfaces
We studied in detail the atomic and electronic structure of the LaMnO3 surfaces, in both cubic and orthorhombic phases, combining GGA-plane wave approach, as implemented into the VASP-4.6.19 computer code, with a slab model. These studies are complemented by a thermodynamic analysis of the surface stability at different gas pressures and temperatures. The obtained results are compared with similar studies for other ABO3-perovskites. 2008 Elsevier B.V. All rights reserved. The ABO3-type perovskite manganites and cobaltates (A = La, Sr, Ca; B = Mn, Co) are important functional materials with numerous high-tech applications [1]. Some of them require understanding and control surface properties…
Radiation defects in complex perovskite solid solutions
Abstract First principles density functional theory (DFT) based modeling is performed to explore formation energies of a series of point cation and oxygen defects, Frenkel and Schottky disorder, as well as structural disorder in Ba1−xSrxCo1−yFeyO3−δ (BSCF) perovskite solid solutions. The results are compared with previous studies on a prototype SrTiO3 perovskite. It is shown that BSCF permits accommodation of a high concentration of defects and cation clusters but not antisite defects.
First principles modeling of Ag adsorption on the LaMnO3 (001) surfaces
Abstract Doping of oxide surfaces with Ag atoms could improve their catalytic properties, e.g. for solid oxide fuel cell and oxygen permeation membrane applications. We present results of the ab initio calculations of Ag adsorption on the LaMnO 3 (LMO) (001) surfaces. The energetically most favorable adsorption sites for low coverage of Ag atoms and monolayer on both MnO 2 - and LaO-terminations have been determined. The electron charge transfer between Ag and substrate and interatomic distances have been analyzed. The Ag atom migration along the MnO 2 surface is ~ 0.5 eV which could lead to a fast clustering of adsorbates at moderate temperatures whereas the adhesion energy of silver monol…
Elastic properties of the sigma W-Re phase: A first principles investigation
Abstract We perform density functional theory (DFT) calculations to obtain the formation enthalpy and six independent elastic constants for the 32 possible occupations of the five non-equivalent sites of the σ -phase. The obtained results suggest linear correlation between bulk modulus and Re concentration and between shear modulus and formation enthalpy. The results are used to parameterize a sublattice model with ideal mixing on each sublattice for the free energy and elastic constants. The model allows one to predict the equilibrium composition on each sublattice and hence elastic constants as a function of global Re concentration and temperature of the W-Re alloy.
Ab initio simulations on AgCl(111) surface and AgCl(111)/α-Al2O3(0001) interface
The defect chemistry and ionic transport properties of the AgCl(111)/α-Al 2 O 3 (0001) interface were consid by using ab initio slab calculations. These calculations were performed in the framework of plane-wave basis combined with the density functional theory (DFT), as implemented into the VASP computer code, and Gaus basis set combined with the Hartree-Fock method (CRYSTAL-98 code). We analyze the electron density distribu on the interface and the electrostatic potential distribution near the AgCl surface. The size of the silver ion is great to enter the corundum surface layer and to create excess silver ions in this way. This is in agreement the experiments on heterogeneous doping of Ag…
The first principles calculations of the atomic and electronic structure of cubic and orthorhombic LaMnO3 surfaces
Combining GGA-plane wave approach as implemented into the VASP - 4.6.19 computer code with a slab model, we studied in detail the atomic and electronic structure of the LaMnO3 surfaces, in both cubic and orthorhombic phases. The results obtained are compared with similar studies for other ABO3-perovskites.
First Principles Modeling of Pd-doped (La,Sr)(Co,Fe)O3Complex Perovskites
(La,Sr)(Co,Fe)O3 (LSCF) perovskites are well known promising materials for cathodes of solid oxide fuel cells. In order to reduce cathode operational temperature, doping on B-sublattice with different metals was suggested. Indeed, as it was shown recently experimentally, doping with low Pd content increases oxygen vacancy concentration which is one of factors controlling oxygen transport in fuel cells. In this Communication, we modeled this material using first principles DFT calculations combined with supercell model. The charge density redistribution, density of states, and local lattice distortion around palladium ions are analyzed and reduction of the vacancy formation energy confirmed.
Trapping of hydrogen and helium at dislocations in tungsten: anab initiostudy
Retention of plasma gas components such as hydrogen (H) isotopes and helium (He) is one of the limiting factors in selection of plasma facing materials for future thermonuclear fusion devices. Tungsten (W) is one of the promising candidates for such materials and was chosen for the divertor armor for International Thermonuclear Experimental Reactor (ITER) and the first wall material for the design of the demonstrational fusion power plant - DEMO. For the analytical estimation of accumulation of H/He components in tungsten, it is important to understand the relevant physical mechanisms of their trapping in the material and thoroughly parameterize them numerically. Experiments involving high …
Comparative density-functional LCAO and plane-wave calculations ofLaMnO3surfaces
We compare two approaches to the atomic, electronic, and magnetic structures of LaMnO3 bulk and the (001), (110) surfaces—hybrid B3PW with optimized LCAO basis set (CRYSTAL-2003 code) and GGA-PW91 with plane-wave basis set (VASP 4.6 code). Combining our calculations with those available in the literature, we demonstrate that combination of nonlocal exchange and correlation used in hybrid functionals allows to reproduce the experimental magnetic coupling constants Jab and Jc as well as the optical gap. Surface calculations performed by both methods using slab models show that the antiferromagnetic (AF) and ferromagnetic (FM) (001) surfaces have lower surface energies than the FM (110) surfac…
Ab initio modelling of the Y, O, and Ti solute interaction in fcc-Fe matrix
Abstract Strengthening of the ODS steels by Y2O3 precipitates permits to increase their operation temperature and radiation resistance, which is important in construction materials for future fusion and advanced fission reactors. Both size and spatial distribution of oxide particles significantly affect mechanical properties and radiation resistance of ODS steels. Addition of the Ti species (present also as a natural impurity atoms in iron lattice) in the particles of Y2O3 powder before their mechanical alloying leads to the formation of YTiO3, Y2TiO5, and Y2Ti2O7 nanoparticles in ODS steels. Modelling of these nanoparticle formation needs detailed knowledge of the energetic interactions be…
Implementing first principles calculations of defect migration in a fuel performance code for UN simulations
Results are reported of first principles VASP supercell calculations of basic defect migration in UN nuclear fuels. The collinear interstitialcy mechanism of N migration is predicted to be energetically more favourable than direct [0 0 1] hops. It is also found that U and N vacancies have close migration energies, and O impurities accelerate migration of N vacancies nearby. These values are both in qualitative agreement with the effect of oxygen on the reduction of the activation energy for thermal creep reported in the literature, as well as in quantitative agreement with the experimental data when taking into account the uncertainties. The migration energies have been implemented in the t…
Energy Conversion: Solid Oxide Fuel Cells: First-Principles Modeling of Elementary Processes
Fuel cells are electrochemical devices that directly transform the chemical free energy of combustion (e.g., H2 + O2 and CHx + O2) into electrical energy. The avoidance of a thermal detour guarantees high theoretical efficiency. As far as the temperature regimes are concerned, we distinguish between high temperature ceramic fuel cells, intermediate-temperature fuel cells, and low temperature (i.e., only slightly above room temperature) fuel cells. The high temperature fuel cells are usually based on oxide components (ternary transition metal oxides as cathodes, Ni or Cu cermets as anodes, and acceptor-doped zirconia or ceria as electrolytes). The high temperature necessary for ion conductio…
Ab initio modelling of titanium impurities in α-Fe lattice
Abstract Reduced activation ferritic-martensitic (RAFM) as well as ferritic steels strengthened by yttrium oxide are considered as candidate materials for future fusion and advanced fission reactors. Addition of Ti during the manufacturing of the oxide dispersed strengthened (ODS) leads to the formation of yttrium titanium oxide particles, which size is smaller compared to yttrium oxide particles. This improves the mechanical properties and radiation resistance of the ODS steels. DFT calculations of Ti impurities have been performed to determine the factors contributing to the formation of the nanoparticles in α-Fe (bcc-Fe) based steels. The interaction energies between TiFe-OFe, TiFe-Ooct,…
Combined theoretical and experimental analysis of processes determining cathode performance in solid oxide fuel cells
Solid oxide fuel cells (SOFC) are under intensive investigation since the 1980's as these devices open the way for ecologically clean direct conversion of the chemical energy into electricity, avoiding the efficiency limitation by Carnot's cycle for thermochemical conversion. However, the practical development of SOFC faces a number of unresolved fundamental problems, in particular concerning the kinetics of the electrode reactions, especially oxygen reduction reaction. We review recent experimental and theoretical achievements in the current understanding of the cathode performance by exploring and comparing mostly three materials: (La,Sr)MnO3 (LSM), (La,Sr)(Co,Fe)O3 (LSCF) and (Ba,Sr)(Co,…
Interaction of carbon with microstructural defects in a W-Re matrix: An ab initio assessment
The interaction of carbon atoms with point defects and the core of edge and screw dislocations with Burgers vector a 0 / 2 ⟨ 111 ⟩ in W and a W-Re matrix is studied by means of ab initio calculations. The structure and energetics of the ground-state atomic configurations are presented and rationalized. It is found that di-vacancies, which are thermally unstable in pure W according to the state-of-the-art ab initio calculations, can nucleate at C and Re-C complexes, which fill the gap in the explanation of the emergence of nanovoids observed experimentally under irradiation. Also, on the basis of the recent experimental evidence and our calculations, the temperature ranges for the manifestat…
DFT plane wave calculations of the atomic and electronic structure of LaMnO3(001) surface
We present the results of ab initio DFT plane wave periodic structure calculations of the LaMnO3 (001) surface. The effects related to three different kinds of pseudopotentials, the slab thickness, magnetic ordering, and surface relaxation are studied and discussed. The antiferromagnetic surface lowest in energy (that is, the spins on Mn ions are parallel in basal plane and antiparallel from plane to plane) has a considerable atomic relaxation up to the fourth plane from the surface. The calculated (Bader) effective charges and the electronic density maps demonstrate a considerable reduction of the Mn atom ionicity on the surface accompanied by a covalent contribution to the Mn–O bonding.