0000000000987770

AUTHOR

J. D. Ovejas

Measurement of the $2^+\rightarrow 0^+$ ground-state transition in the $\beta$ decay of $^{20}$F

We report the first detection of the second-forbidden, non-unique, $2^+\rightarrow 0^+$, ground-state transition in the $\beta$ decay of $^{20}$F. A low-energy, mass-separated $^{20}\rm{F}^+$ beam produced at the IGISOL facility in Jyv\"askyl\"a, Finland, was implanted in a thin carbon foil and the $\beta$ spectrum measured using a magnetic transporter and a plastic-scintillator detector. The $\beta$-decay branching ratio inferred from the measurement is $b_{\beta} = [ 0.41\pm 0.08\textrm{(stat)}\pm 0.07\textrm{(sys)}] \times 10^{-5}$ corresponding to $\log ft = 10.89(11)$, making this one of the strongest second-forbidden, non-unique $\beta$ transitions ever measured. The experimental resu…

research product

Measurement of the 2+--0+ ground-state transition in the ß decay of 20F

12 pags., 16 figs., 4 tabs.

research product

Measurement of the 2+→0+ ground-state transition in the β decay of 20F

We report the first detection of the second-forbidden, nonunique, 2+→0+, ground-state transition in the β decay of 20F. A low-energy, mass-separated 20F+ beam produced at the IGISOL facility in Jyväskylä, Finland, was implanted in a thin carbon foil and the β spectrum measured using a magnetic transporter and a plastic-scintillator detector. The β-decay branching ratio inferred from the measurement is bβ=[0.41±0.08(stat)±0.07(sys)]×10−5 corresponding to logft=10.89(11), making this one of the strongest second-forbidden, nonunique β transitions ever measured. The experimental result is supported by shell-model calculations and has significant implications for the final evolution of stars tha…

research product

Decay studies of the long-lived states in $^{186}$Tl

Decay spectroscopy of the long-lived states in $^{186}$Tl has been performed at the ISOLDE Decay Station at ISOLDE, CERN. The $\alpha$ decay from the low-spin $(2^-)$ state in $^{186}$Tl was observed for the first time and a half-life of $3.4^{+0.5}_{-0.4}$ s was determined. Based on the $\alpha$-decay energy, the relative positions of the long-lived states were fixed, with the $(2^-)$ state as the ground state, the $7^{(+)}$ state at 77(56)~keV and the $10^{(-)}$ state at 451(56) keV. The level scheme of the internal decay of the $^{186}$Tl($10^{(-)}$) state ($T_{1/2} = 3.40(9)$ s), which was known to decay solely through emission of 374 keV $\gamma$-ray transition, was extended and a lowe…

research product

Decay studies of the long-lived states in Tl-186

9 pags., 12 figs., 3 tabs.

research product

Decay studies of the long-lived states in Tl186

Decay spectroscopy of the long-lived states in 186Tl has been performed at the ISOLDE Decay Station at ISOLDE, CERN. The α decay from the low-spin (2−) state in 186Tl was observed for the first time and a half-life of 3.4+0.5−0.4 s was determined. Based on the α-decay energy, the relative positions of the long-lived states were fixed, with the (2−) state as the ground state, the 7(+) state at 77(56) keV, and the 10(−) state at 451(56) keV. The level scheme of the internal decay of the 186Tl(10(−)) state [T1/2=3.40(9) s], which was known to decay solely through emission of 374-keV γ-ray transition, was extended and a lower limit for the β-decay branching bβ>5.9(3)% was determined. The extrac…

research product

Measurement of the 2+→0+ ground-state transition in the β decay of F 20

| openaire: EC/H2020/654002/EU//ENSAR2 We report the first detection of the second-forbidden, nonunique, 2(+) -> 0(+), ground-state transition in the beta decay of F-20. A low-energy, mass-separated F-20(+) beam produced at the IGISOL facility in Jyvaskyla, Finland, was implanted in a thin carbon foil and the beta spectrum measured using a magnetic transporter and a plastic-scintillator detector. The beta-decay branching ratio inferred from the measurement is b(beta) = [0.41 +/- 0.08(stat) +/- 0.07(sys)] x 10(-5) corresponding to log ft = 10.89(11), making this one of the strongest second-forbidden, nonunique beta transitions ever measured. The experimental result is supported by shell-mode…

research product

Measurement of the 2 + → 0 + ground-state transition in the β decay of F 20

research product

Measurement of the 2+→0+ ground-state transition in the β decay of F20

We report the first detection of the second-forbidden, nonunique, 2+→0+, ground-state transition in the β decay of F20. A low-energy, mass-separated F+20 beam produced at the IGISOL facility in Jyvaskyla, Finland, was implanted in a thin carbon foil and the β spectrum measured using a magnetic transporter and a plastic-scintillator detector. The β-decay branching ratio inferred from the measurement is bβ=[0.41±0.08(stat)±0.07(sys)]×10-5 corresponding to logft=10.89(11), making this one of the strongest second-forbidden, nonunique β transitions ever measured. The experimental result is supported by shell-model calculations and has significant implications for the final evolution of stars tha…

research product