High efficiency of Pt2+ - CeO2 novel thin film catalyst as anode for proton exchange membrane fuel cells
Abstract The elevated price of Pt limits the large-scale implementation of commercial proton exchange membrane fuel cells, which effectively convert chemical energy into electricity. In order to increase the cost-efficiency in proton-exchange membrane fuel cells, we have designed a family of novel anode catalysts consisting of thin films of ceria with low Pt loadings sputtered on a nanostructured carbon support. Remarkably, only such small amounts of Pt are necessary for achieving power density values comparable to the reference commercial catalysts, which results in excellent specific activities of our samples. By combining photoelectron spectroscopy and catalytic performance analysis, we …
Pt–CeO thin film catalysts for PEMFC
Abstract Platinum is the mostly used element in catalysts for fuel cell technology, but its high price limits large-scale applications. Platinum doped cerium oxide represents an alternative solution due to very low loading, typically few micrograms per 1 cm2, at the proton exchange membrane fuel cell (PEMFC) anode. High efficiency is achieved by using magnetron sputtering deposition of cerium oxide and Pt of 30 nm thick nanoporous films on large surface carbon nanoparticle substrates. Thin film techniques permits to grow the catalyst film characterized by highly dispersed platinum, mostly in ionic Pt2+ state. Such dispersed Pt species show high activity and stability. These new materials ma…
Proton exchange membrane fuel cell made of magnetron sputtered Pt–CeO and Pt–Co thin film catalysts
Abstract Preparation of catalysts for proton exchange membrane fuel cells (PEMFCs) is of growing interest during last years. The magnetron sputtering technique is a promising method of catalyst preparation because it permits to synthesize catalysts in a fast and relatively less expensive way, however control of specific surface and durability of such catalysts still remains the main concern. We tested a single cell PEMFC catalyzed by using exclusively thin film approach by combining state-of-the art Pt-doped cerium oxide anode and a new Pt–Co alloy cathode. We have shown that beside very high mass activity of the catalysts relative to the membrane electrode assembly the catalyst nanoporous …