6533b858fe1ef96bd12b571b

RESEARCH PRODUCT

Pt–CeO thin film catalysts for PEMFC

Andrii RednykMykhailo VorokhtaValérie PotinIva MatolínováRoman FialaMichal VaclavuVladimír MatolínIvan KhalakhanJaroslava Lavkova

subject

Cerium oxideMaterials scienceNanoporousCatalyst supportInorganic chemistryProton exchange membrane fuel cellchemistry.chemical_elementGeneral ChemistrySputter depositionCatalysisCatalysischemistryThin filmPlatinum

description

Abstract Platinum is the mostly used element in catalysts for fuel cell technology, but its high price limits large-scale applications. Platinum doped cerium oxide represents an alternative solution due to very low loading, typically few micrograms per 1 cm2, at the proton exchange membrane fuel cell (PEMFC) anode. High efficiency is achieved by using magnetron sputtering deposition of cerium oxide and Pt of 30 nm thick nanoporous films on large surface carbon nanoparticle substrates. Thin film techniques permits to grow the catalyst film characterized by highly dispersed platinum, mostly in ionic Pt2+ state. Such dispersed Pt species show high activity and stability. These new materials may help to substantially reduce the demand for expensive noble-metals in catalytic applications. We measured Pt–CeOx thin film anode catalyst activity in a hydrogen PEMFC and compared it with performance of a standard reference cell. Photoelectron spectroscopy was used to investigate chemical composition of Pt–CeOx induced by the catalyst interaction with hydrogen. Nanostructured character of the catalyst was confirmed by electron microscopy.

https://doi.org/10.1016/j.cattod.2014.03.069