0000000000999310

AUTHOR

Vesa-matti Hiltunen

showing 9 related works from this author

Making Graphene Luminescent by Direct Laser Writing

2020

Graphene is not intrinsically luminescent, due to a lack of bandgap, and methods for its creation are tricky for device fabrication. In this study, we create luminescent graphene patterns by a simple direct laser writing method. We analyze the graphene using Raman spectroscopy and find that the laser writing leads to generation of line defects after initial formation of point defects. This Raman data enables us to create a model that explains the luminescence by a formation of small domains due to confinement of graphene by line defects, which is conceptually similar to the mechanism of luminescence in graphene quantum dots. peerReviewed

Materials scienceFabricationBand gapspektroskopia02 engineering and technology010402 general chemistry01 natural scienceslaw.inventionlawPhysical and Theoretical ChemistryRaman-spektroskopiaGraphenebusiness.industryluminesenssi021001 nanoscience & nanotechnologyLaserlasertekniikka0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsGeneral EnergyRaman spectroscopyOptoelectronics0210 nano-technologyLuminescencebusinessThe Journal of Physical Chemistry C
researchProduct

Tuning protein adsorption on graphene surfaces via laser-induced oxidation

2021

An approach for controlled protein immobilization on laser-induced two-photon (2P) oxidation patterned graphene oxide (GO) surfaces is described. Selected proteins, horseradish peroxidase (HRP) and biotinylated bovine serum albumin (b-BSA) were successfully immobilized on oxidized graphene surfaces, via non-covalent interactions, by immersion of graphene-coated microchips in the protein solution. The effects of laser pulse energy, irradiation time, protein concentration and duration of incubation on the topography of immobilized proteins and consequent defects upon the lattice of graphene were systemically studied by atomic force microscopy (AFM) and Raman spectroscopy. AFM and fluorescence…

Materials scienceOxideBioengineering02 engineering and technology010402 general chemistry01 natural sciencesHorseradish peroxidaselaw.inventionsymbols.namesakechemistry.chemical_compoundlawFluorescence microscopeGeneral Materials ScienceBovine serum albuminbiologyGrapheneGeneral EngineeringGeneral Chemistry021001 nanoscience & nanotechnologyAtomic and Molecular Physics and Optics0104 chemical sciencesChemical engineeringchemistryBiotinylationbiology.proteinsymbols0210 nano-technologyRaman spectroscopyProtein adsorptionNanoscale Advances
researchProduct

Optically Forged Diffraction-Unlimited Ripples in Graphene

2018

In nanofabrication, just as in any other craft, the scale of spatial details is limited by the dimensions of the tool at hand. For example, the smallest details for direct laser writing with far-field light are set by the diffraction limit, which is approximately half of the used wavelength. In this work, we overcome this universal assertion by optically forging graphene ripples that show features with dimensions unlimited by diffraction. Thin sheet elasticity simulations suggest that the scaled-down ripples originate from the interplay between substrate adhesion, in-plane strain, and circular symmetry. The optical forging technique thus offers an accurate way to modify and shape two-dimens…

DiffractionLetterMaterials scienceta221FOS: Physical sciencesPhysics::Opticsnanotekniikka02 engineering and technology01 natural sciencesForginglaw.inventionResonatornanorakenteetlawMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesgrafeeniGeneral Materials SciencePhysical and Theoretical Chemistry010306 general physicsta116PlasmonCondensed Matter - Mesoscale and Nanoscale Physicsta114business.industryGraphenegraphene021001 nanoscience & nanotechnologyLaseroptical forgingWavelengthNanolithographyOptoelectronics0210 nano-technologybusinessJournal of Physical Chemistry Letters
researchProduct

Real-time monitoring of graphene patterning with wide-field four-wave mixing microscopy

2016

The single atom thick two-dimensional graphene is a promising material for various applications due to its extraordinary electronic, optical, optoelectronic, and mechanical properties. The demand for developing graphene based applications has entailed a requirement for development of methods for fast imaging techniques for graphene. Here, we demonstrate imaging of graphene with femtosecond wide-field four-wave mixing microscopy. The method provides a sensitive, non-destructive approach for rapid large area characterization of graphene. We show that the method is suitable for online following of a laser patterning process of microscale structures on single-layer graphene. peerReviewed

Materials sciencePhysics and Astronomy (miscellaneous)Nanotechnology02 engineering and technology01 natural scienceslaw.invention010309 opticsFour-wave mixinglawNondestructive testing0103 physical sciencesMicroscopygrafeenita116Mixing (physics)Microscale chemistryta114Graphenebusiness.industrygraphene021001 nanoscience & nanotechnologyCharacterization (materials science)four-wave mixing microscopyFemtosecond0210 nano-technologybusiness
researchProduct

Ultrastiff graphene

2021

Graphene has exceptionally high in-plane strength, which makes it ideal for various nanomechanical applications. At the same time, its exceptionally low out-of-plane stiffness makes it also flimsy and hard to handle, rendering out-of-plane structures unstable and difficult to fabricate. Therefore, from an application point of view, a method to stiffen graphene would be highly beneficial. Here we demonstrate that graphene can be significantly stiffened by using a laser writing technique called optical forging. We fabricate suspended graphene membranes and use optical forging to create stable corrugations. Nanoindentation experiments show that the corrugations increase graphene bending stiffn…

ChemistrynanorakenteetTA401-492grafeeniohutkalvotMaterials of engineering and construction. Mechanics of materialsQD1-999
researchProduct

Shaping graphene with optical forging: from a single blister to complex 3D structures

2020

Properties of graphene, such as electrical conduction and rigidity can be tuned by introducing local strain or defects into its lattice. We used optical forging, a direct laser writing method, under an inert gas atmosphere, to produce complex 3D patterns of single layer graphene. We observed bulging of graphene out of the plane due to defect induced lattice expansion. By applying low peak fluences, we obtained a 3D-shaped graphene surface without either ablating it or deforming the underlying Si/SiO2 substrate. We used micromachining theory to estimate the single-pulse modification threshold fluence of graphene, which was 8.3 mJ cm−2, being an order of magnitude lower than the threshold for…

DiffractionMaterials scienceBioengineering02 engineering and technologySubstrate (electronics)010402 general chemistry01 natural sciencesFluencesähkönjohtavuusForginglaw.inventionsymbols.namesakelawgrafeenimedicineGeneral Materials Sciencebusiness.industryGrapheneGeneral EngineeringBlistersGeneral Chemistry021001 nanoscience & nanotechnologyAtomic and Molecular Physics and Optics0104 chemical sciencesSurface micromachiningsymbolsOptoelectronicsmedicine.symptom0210 nano-technologybusinessRaman spectroscopyNanoscale Advances
researchProduct

Optical Forging of Graphene into Three-Dimensional Shapes

2017

Atomically thin materials, such as graphene, are the ultimate building blocks for nanoscale devices. But although their synthesis and handling today are routine, all efforts thus far have been restricted to flat natural geometries, since the means to control their three-dimensional (3D) morphology has remained elusive. Here we show that, just as a blacksmith uses a hammer to forge a metal sheet into 3D shapes, a pulsed laser beam can forge a graphene sheet into controlled 3D shapes in the nanoscale. The forging mechanism is based on laser-induced local expansion of graphene, as confirmed by computer simulations using thin sheet elasticity theory. peerReviewed

Materials scienceBioengineeringNanotechnology02 engineering and technology01 natural sciencesForginglaw.inventionStrain engineeringForgelaw0103 physical sciencesgrafeeniGeneral Materials ScienceHammer010306 general physicsta116Nanoscopic scalenanoscale devicesta114GrapheneMechanical EngineeringgrapheneGeneral ChemistryThin sheet021001 nanoscience & nanotechnologyCondensed Matter Physics3d shapesEngineering physicsoptical forging0210 nano-technologyNano Letters
researchProduct

Suspended graphene device fabrication

2016

Tämän pro gradu -tutkielman aiheena oli tutkia itsekantavien grafeeninäytteiden valmistusta. Grafeeni syntetisoitiin kaasufaasikasvatuksella ilmakehän paineessa kupariohutkalvoille. Kupariohutkalvot valmistattiin käyttämällä elektronisuihkuhöyrystystä. Projektin aikana synteesiprosessia parannettiin optimoimalla synteesiparametreja. Syntetisoinnin jälkeen grafeeninäytteet siirrettiin piinitridikalvoille, joihin oli valmistettu reikiä. Viimeinen vaihe siirrossa on PMMA tukikerroksen poisto grafeenin päältä, jota tutkittiin käyttämällä kahta eri menetelmää. Näistä ensimmäinen menetelmä oli lämpökäsittely ja toinen kriittisen pisteen kuivaus PMMA:n asetoniin liuottamisen jälkeen. Näytteet kuva…

grapheneRaman spectroscopygrafeenisuspended grapheneohutkalvotCVD
researchProduct

Tuning protein adsorption on graphene surfaces via laser-induced oxidation

2021

An approach for controlled protein immobilization on laser-induced two-photon (2P) oxidation patterned graphene oxide (GO) surfaces is described. Selected proteins, horseradish peroxidase (HRP) and biotinylated bovine serum albumin (b-BSA) were successfully immobilized on oxidized graphene surfaces, via non-covalent interactions, by immersion of graphene-coated microchips in the protein solution. The effects of laser pulse energy, irradiation time, protein concentration and duration of incubation on the topography of immobilized proteins and consequent defects upon the lattice of graphene were systemically studied by atomic force microscopy (AFM) and Raman spectroscopy. AFM and fluorescence…

spektroskopiagrafeenihapettuminenproteiinitatomivoimamikroskopialasertekniikkamikrosirutfluoresenssimikroskopia
researchProduct