0000000001000177

AUTHOR

Léocadie Henry

The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser

Phytochrome proteins control the growth, reproduction, and photosynthesis of plants, fungi, and bacteria. Light is detected by a bilin cofactor, but it remains elusive how this leads to activation of the protein through structural changes. We present serial femtosecond X-ray crystallographic data of the chromophore-binding domains of a bacterial phytochrome at delay times of 1 ps and 10 ps after photoexcitation. The data reveal a twist of the D-ring, which leads to partial detachment of the chromophore from the protein. Unexpectedly, the conserved so-called pyrrole water is photodissociated from the chromophore, concomitant with movement of the A-ring and a key signaling aspartate. The chan…

research product

Structural photoactivation of a full-length bacterial phytochrome

Time-resolved x-ray solution scattering reveals the conformational signaling mechanism of a bacterial phytochrome.

research product

Author response: The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser

research product

On the (un)coupling of the chromophore, tongue interactions, and overall conformation in a bacterial phytochrome

Phytochromes are photoreceptors in plants, fungi, and various microorganisms and cycle between metastable red light-absorbing (Pr) and far-red light-absorbing (Pfr) states. Their light responses are thought to follow a conserved structural mechanism that is triggered by isomerization of the chromophore. Downstream structural changes involve refolding of the so-called tongue extension of the phytochrome-specific GAF-related (PHY) domain of the photoreceptor. The tongue is connected to the chromophore by conserved DIP and PRXSF motifs and a conserved tyrosine, but the role of these residues in signal transduction is not clear. Here, we examine the tongue interactions and their interplay with …

research product

Photoactivation of Drosophila melanogaster cryptochrome through sequential conformational transitions

Time-resolved x-ray scattering reveals light-induced signal transduction in insect cryptochromes.

research product

Sequential conformational transitions and α-helical supercoiling regulate a sensor histidine kinase

Sensor histidine kinases are central to sensing in bacteria and in plants. They usually contain sensor, linker, and kinase modules and the structure of many of these components is known. However, it is unclear how the kinase module is structurally regulated. Here, we use nano- to millisecond time-resolved X-ray scattering to visualize the solution structural changes that occur when the light-sensitive model histidine kinase YF1 is activated by blue light. We find that the coiled coil linker and the attached histidine kinase domains undergo a left handed rotation within microseconds. In a much slower second step, the kinase domains rearrange internally. This structural mechanism presents a t…

research product

The three-dimensional structure of Drosophila melanogaster (6–4) photolyase at room temperature

A crystal structure of a photolyase at room temperature confirms the structural information obtained from cryogenic crystallography and paves the way for time-resolved studies of the photolyase at an X-ray free-electron laser.

research product