0000000001004767

AUTHOR

Mauro De Marchis

showing 31 related works from this author

The role of the tidal and wind forces on the hydrodynamic flow pattern in the Augusta Harbour (Italy)

2012

3D numerical modelingwindHydrodynamicSettore ICAR/01 - Idraulica
researchProduct

A coupled Finite Volume–Smoothed Particle Hydrodynamics method for incompressible flows

2016

Abstract An hybrid approach is proposed which allows to combine Finite Volume Method (FVM) and Smoothed Particle Hydrodynamics (SPH). The method is based on the partitioning of the computational domain into a portion discretized with a structured grid of hexahedral elements (the FVM-domain ) and a portion filled with Lagrangian particles (the SPH-domain ), separated by an interface made of triangular elements. A smooth transition between the solutions in the FVM and SPH regions is guaranteed by the introduction of a layer of grid cells in the SPH-domain and of a band of virtual particles in the FVM one (both neighboring the interface), on which the hydrodynamic variables are obtained throug…

DiscretizationSPHComputational MechanicsGeneral Physics and AstronomyCoupled FVM–SPH approachBoundary condition01 natural sciences010305 fluids & plasmasSettore ICAR/01 - IdraulicaSmoothed-particle hydrodynamicsPhysics and Astronomy (all)0103 physical sciencesComputational mechanicsMechanics of Material0101 mathematicsMirror particleComputational MechanicPhysicsFinite volume methodMechanical EngineeringMathematical analysisSmoothed Particle HydrodynamicComputer Science Applications1707 Computer Vision and Pattern RecognitionGridComputer Science ApplicationsComputational physics010101 applied mathematicsMechanics of MaterialsCompressibilityReduction (mathematics)Interpolation
researchProduct

Large Eddy Simulations of Rough Turbulent Channel Flows Bounded by Irregular Roughness: Advances Toward a Universal Roughness Correlation

2020

The downward shift of the mean velocity profile in the logarithmic region, known as roughness function, $$\Delta U^+$$ , is the major macroscopic effect of roughness in wall bounded flows. This speed decrease, which is strictly linked to the friction Reynolds number and the geometrical properties which define the roughness pattern such as roughness height, density, shape parameters, has been deeply investigated in the past decades. Among the geometrical parameters, the effective slope (ES) seems to be suitable to estimate the roughness function at fixed friction Reynolds number, Re $$_{\tau }$$ . In the present work, the effects of several geometrical parameters on the roughness function, i…

FrictionLogarithmGeneral Chemical EngineeringGeometryGeneral Physics and AstronomyTurbulent channel flows Large eddy simulation02 engineering and technologySurface finishMacroscopic effects01 natural sciencesReynolds numberSettore ICAR/01 - Idraulica010305 fluids & plasmasRoot mean squaresymbols.namesakeSinusoidal functions0203 mechanical engineering0103 physical sciencesPhysical and Theoretical ChemistryChannel flowEffective slopePhysicsRoughness correlationTurbulenceMathematical analysisReynolds numberTexturesMean velocity profilesRoughnessOpen-channel flowWall flow Geometrical property020303 mechanical engineering & transportsAmplitudeLESLogarithmic regionsMean absolute deviationssymbolsLarge eddy simulationFlow, Turbulence and Combustion
researchProduct

Effect of the junction angle on turbulent flow at a hydraulic confluence

2018

Despite the existing knowledge concerning the hydrodynamic processes at river junctions, there is still a lack of information regarding the particular case of low width and discharge ratios, which are the typical conditions of mountain river confluences. Aiming at filling this gap, laboratory and numerical experiments were conducted, comparing the results with literature findings. Ten different confluences from 45 ∘ to 90 ∘ were simulated to study the effects of the junction angle on the flow structure, using a numerical code that solves the 3D Reynolds Averaged Navier-Stokes (RANS) equations with the k- ϵ turbulence closure model. The results showed that the higher the junction angle, the …

channel confluences; junction angle; flow deflection zone; flow retardation zone; flow separation zone; numerical modelling; PANORMUSlcsh:Hydraulic engineering010504 meteorology & atmospheric sciences0208 environmental biotechnologyGeography Planning and DevelopmentPANORMUS02 engineering and technologyAquatic ScienceFlow retardation zone01 natural sciencesBiochemistryFlow separation zoneSettore ICAR/01 - Idraulicalcsh:Water supply for domestic and industrial purposesDeflection (engineering)lcsh:TC1-978Junction angleTributarySeparation zone0105 earth and related environmental sciencesWater Science and Technologygeographylcsh:TD201-500geography.geographical_feature_categoryTurbulenceChannel confluenceMechanics020801 environmental engineeringNumerical modellingConfluenceFlow deflection zoneReynolds-averaged Navier–Stokes equationschannel confluencesGeology
researchProduct

ANALISI DEGLI EFFETTI DELLA DISTRIBUZIONE TURNATA MEDIANTE LA MODELLAZIONE DEL RIEMPIMENTO DELLA RETE

2010

processo di riempimento delle condotteserbatoio privatoReti di distribuzioneSettore ICAR/01 - Idraulica
researchProduct

A multi-domain approach for smoothed particle hydrodynamics simulations of highly complex flows

2018

Abstract An efficient and accurate method is proposed to solve the incompressible flow momentum and continuity equations in computational domains partitioned into subdomains in the framework of the smoothed particle hydrodynamics method. The procedure does not require any overlap of the subdomains, which would result in the increase of the computational effort. Perfectly matching solutions are obtained at the surfaces separating neighboring blocks. The block interfaces can be both planar and curved surfaces allowing to easily decompose even geometrically complex domains. The smoothing length of the kernel function is maintained constant in each subdomain, while changing between blocks where…

Computer scienceComputational MechanicsGeneral Physics and AstronomyBoundary condition010103 numerical & computational mathematics01 natural sciencesSettore ICAR/01 - IdraulicaMomentumSmoothed-particle hydrodynamicsPhysics and Astronomy (all)Smoothed particle hydrodynamicIncompressible flowComputational mechanicsMechanics of MaterialDomain decomposition0101 mathematicsMirror particleComputational MechanicConservation of massISPHBlock (data storage)Mechanical EngineeringComputer Science Applications1707 Computer Vision and Pattern RecognitionDomain decomposition methodsComputer Science Applications010101 applied mathematicsMechanics of MaterialsMulti-blockAlgorithmSmoothingComputer Methods in Applied Mechanics and Engineering
researchProduct

Wind- and tide-induced currents in the Stagnone Lagoon (Sicily)

2011

The hydrodynamic circulation is analyzed in the coastal lagoon of Stagnone di Marsala, a natural reserve located in the north-western part of Sicily, using both experimental measurements and numerical simulations. Field measurements of velocities and water levels, carried out using an ultrasound sensor (3D), are used to validate the numerical model. A 3D finite-volume model is used to solve the Reynolds-averaged momentum and mass balance differential equations on a curvilinear structured grid, employing the k– $${\varepsilon}$$ turbulence model for the Reynolds stresses. The numerical analysis allows to identify the relative contribution of the forces affecting the hydrodynamic circulation …

HydrogeologySeicheMeteorologyTurbulenceFlow (psychology)Wind stressReynolds stressMechanicsSettore ICAR/01 - IdraulicaWaves and shallow waterCirculation (fluid dynamics)Coastal lagoon. Tidal hydrodynamics. Shallow-water. Seiche. Wind-driven flowEnvironmental ChemistryPhysics::Atmospheric and Oceanic PhysicsGeologyWater Science and Technology
researchProduct

A numerical unsteady friction model for the transient flow arising during the filling process of intermittent water distribution systems.

2011

Method of characteristicsWater distribution networkUnsteady flow
researchProduct

Effects of roughness on particle dynamics in turbulent channel flows: a DNS analysis

2014

AbstractDeposition and resuspension mechanisms in particle-laden turbulent flows are dominated by the coherent structures arising in the wall region. These turbulent structures, which control the turbulent regeneration cycles, are affected by the roughness of the wall. The particle-laden turbulent flow in a channel bounded by irregular two-dimensional rough surfaces is analysed. The behaviour of dilute dispersions of heavy particles is analysed using direct numerical simulations (DNS) to calculate the three-dimensional turbulent flow and Lagrangian tracking to describe the turbophoretic effect associated with two-phase turbulent flows in a complex wall-bounded domain. Turbophoresis is inves…

PhysicsParticle statisticsTurbulenceMechanical Engineeringmedia_common.quotation_subjectParticle-laden flowsProbability density functionMechanicsCondensed Matter PhysicsTracking (particle physics)Inertiamultiphase and particle-laden flows particle/fluid flows turbulent flowsPhysics::Fluid DynamicsMechanics of MaterialsParticleParticle velocitymedia_commonJournal of Fluid Mechanics
researchProduct

PANORMUS-SPH. A new Smoothed Particle Hydrodynamics solver for incompressible flows

2015

Abstract A new Smoothed Particle Hydrodynamics (SPH) solver is presented, fully integrated within the PANORMUS package [7] , originally developed as a Finite Volume Method (FVM) solver. The proposed model employs the fully Incompressible SPH approach, where a Fractional Step Method is used to make the numerical solution march in time. The main novelty of the proposed model is the use of a general and highly flexible procedure to account for different boundary conditions, based on the discretization of the boundary surfaces with a set of triangles and the introduction of mirror particles with suitable hydrodynamic properties. Both laminar and turbulent flows can be solved (the latter using t…

Finite volume methodGeneral Computer ScienceDiscretizationSPHComputer Science (all)General EngineeringBoundary (topology)Laminar flowBoundary conditionSolverHybrid fvm-sph approachComputational scienceSettore ICAR/01 - IdraulicaPhysics::Fluid DynamicsSmoothed-particle hydrodynamicsEngineering (all)Smoothed particle hydrodynamicCompressibilityBoundary value problemMirror particleComputingMethodologies_COMPUTERGRAPHICSMathematics
researchProduct

Experimental Evidence of Leaks in Elastic Pipes

2016

Several studies have been carried out in recent decades to establish a relationship between total head and leaks. In literature, the leakage governing equations have been analysed in light of pipe materials, water head, leak dimension or shape. Most of these contributions questioned the classical Torricelli equation, demonstrating through experimental evidence that the classical orifice law can give unsatisfactory results. Nevertheless, starting from the Torricelli equation, other exponential or linear governing equations have been proposed as mathematical models able to reproduce the leakages in water distribution systems (WDSs). To investigate the validity of the proposed governing equati…

Laboratory testLeakEngineering0208 environmental biotechnologyPopulationRigidity (psychology)02 engineering and technology010501 environmental sciences01 natural sciencesHydraulic headExperimentGeotechnical engineeringeducationElastic pipe0105 earth and related environmental sciencesWater Science and TechnologyCivil and Structural Engineeringeducation.field_of_studyHydrogeologyMathematical modelbusiness.industryMechanicsWater distribution network020801 environmental engineeringExponential functionHead-leakage formulaLeakbusinessBody orifice
researchProduct

Implementation of pressure reduction valves in a dynamic water distribution numerical model to control the inequality in water supply

2013

The analysis of water distribution networks has to take into account the variability of users' water demand and the variability of network boundary conditions. In complex systems, e.g. those characterized by the presence of local private tanks and intermittent distribution, this variability suggests the use of dynamic models that are able to evaluate the rapid variability of pressures and flows in the network. The dynamic behavior of the network also affects the performance of valves that are used for controlling the network. Pressure reduction valves (PRVs) are used for controlling pressure and reducing leakages. Highly variable demands can produce significant fluctuation of the PRV set po…

Atmospheric ScienceEngineeringPressure controlbusiness.industryFlow (psychology)Complex systemWater supplyGeotechnical Engineering and Engineering Geologydynamic model intermittent distribution method of characteristic pipe-filling process PRVs water distribution network modelingVariable (computer science)Control theoryBoundary value problemWater qualityTransient (oscillation)businessSimulationCivil and Structural EngineeringWater Science and TechnologyJournal of Hydroinformatics
researchProduct

Modeling of distribution network filling process during intermittent supply

2009

Water distribution networkUnsteady flowSettore ICAR/01 - Idraulica
researchProduct

Pumps as turbines (PATs) in water distribution networks affected by intermittent service

2013

A hydraulic model was developed in order to evaluate the potential energy recovery from the use of centrifugal pumps as turbines (PATs) in a water distribution network characterized by the presence of private tanks. The model integrates the Global Gradient Algorithm (GGA), with a pressure-driven model that permits a more realistic representation of the influence on the network behaviour of the private tanks filling and emptying. The model was applied to a real case study: a District Metered Area in Palermo (Italy). Three different scenarios were analysed and compared with a baseline scenario (Scenario 0 – no PAT installed) to identify the system configuration with added PATs that permits th…

Atmospheric ScienceService (systems architecture)geographyEngineeringgeography.geographical_feature_categorybusiness.industryNode (networking)Monte Carlo methodGeotechnical Engineering and Engineering GeologyCentrifugal pumpInletpressure-driven demandenergy productionwater distribution networkshydraulic modellingNetwork performancepump as turbineBaseline (configuration management)businessDownstream (networking)SimulationCivil and Structural EngineeringWater Science and TechnologyMarine engineeringJournal of Hydroinformatics
researchProduct

Implementation of Pressure Reduction Valves in a dynamic water distribution system numerical model

2012

Water distribution NetworkUnsteady flowSettore ICAR/01 - Idraulica
researchProduct

Three-dimensional numerical simulations on wind- and tide-induced currents: The case of Augusta Harbour (Italy)

2014

The hydrodynamic circulation in the coastal area of the Augusta Bay (Italy), located in the eastern part of Sicily, is analysed. Due to the heavy contamination generated by the several chemical and petrochemical industries active in the zone, the harbour was declared a Contaminated Site of National Interest. To mitigate the risks connected with the industrial activities located near the harbour, it is important to analyse the hydrodynamic circulation in the coastal area. To perform such analysis, a parallel 3D numerical model is used to solve the Reynolds-averaged momentum and mass balance, employing the k-e turbulence model for the Reynolds stresses. The numerical model is parallelized usi…

Curvilinear coordinatesMeteorologyTurbulenceDomain decomposition methodsReynolds stressMomentumCurrent (stream)Circulation (fluid dynamics)Free surfaceWind-driven flow MPI 3D hydrodynamicmodel Finite volumemodel ParallelcomputingComputers in Earth SciencesPhysics::Atmospheric and Oceanic PhysicsGeologyInformation SystemsMarine engineering
researchProduct

Modelling of E. colidistribution in coastal areas subjected to combined sewer overflows

2013

Rivers, lakes and the sea were the natural receivers of raw urban waste and storm waters for a long time but the low sustainability of such practice, the increase of population and a renewed environmental sensibility increased researcher interest in the analysis and mitigation of the impact of urban waters on receiving water bodies (RWB). In Europe, the integrated modelling of drainage systems and RWB has been promoted as a promising approach for implementing the Water Framework Directive. A particular interest is given to the fate of pathogens and especially of Escherichia coli, in all the cases in which an interaction between population and the RWB is foreseen. The present paper aims to p…

Environmental Engineeringcoastal water quality Escherichia coli propagation integrated urban drainage modelling receiving water bodiesPopulationSewageSettore ICAR/01 - IdraulicaRiversDrainage system (geomorphology)Numerical modelingEnvironmental monitoringEscherichia coliDrainageeducationWater Science and Technologyeducation.field_of_studySewagebusiness.industryEnvironmental engineeringHydrodynamicModels TheoreticalWater Framework DirectiveEnvironmental scienceCoastal areaCombined sewerWater qualitybusinessEnvironmental Monitoring
researchProduct

Large eddy simulation of inertial particles dispersion in a turbulent gas-particle channel flow bounded by rough walls

2020

The purpose of this paper is to understand the capability and consistency of large eddy simulation (LES) in Eulerian–Lagrangian studies aimed at predicting inertial particle dispersion in turbulent wall-bounded flows, in the absence of ad hoc closure models in the Lagrangian equations of particle motion. The degree of improvement granted by LES models is object of debate, in terms of both accurate prediction of particle accumulation and local particle segregation; therefore, we assessed the accuracy in the prediction of the particle velocity statistics by comparison against direct numerical simulation (DNS) of a finer computational mesh, under both one-way and two-way coupling regimes. We p…

Lagrange multipliersLagrangian equationsParticle statisticsParticle statisticsVelocity controlComputational MechanicsDirect numerical simulationWall flow Accurate prediction02 engineering and technology01 natural sciencesReynolds numberSettore ICAR/01 - Idraulica010305 fluids & plasmasPhysics::Fluid Dynamicssymbols.namesake0203 mechanical engineeringEquations of motion0103 physical sciencesParticle velocityDispersionsPhysicsTurbulence modificationTurbulenceMechanical EngineeringLarge eddy simulationTwo phase flowReynolds numberMechanicsTurbulent wall-bounded flows Segregation (metallography)Open-channel flow020303 mechanical engineering & transportsParticle accumulationQuay wallssymbolsParticle segregationParticleForecastingParticle velocitiesLarge eddy simulationActa Mechanica
researchProduct

Uno studio numerico del moto turbolento in un canale con parete scabra

2006

researchProduct

Un modello per il riempimento delle reti di distribuzione idrica in presenza di turnazione del servizio

2010

distribuzione turnatamodellazione matematica delle reti di distribuzione idricaprocesso di riempimento delle condotte
researchProduct

Un modello di simulazione dei fenomenici riempimento di reti di distribuizione idrica

2005

researchProduct

3D Numerical Simulationof Curved Open Channel Flows

2006

researchProduct

Wind- and tide-induce currents in the Stagnone Lagoon (Sicily)

2009

wind-driven flowshallow waterseichetidal hydrodynamicCoastal lagoonSettore ICAR/01 - Idraulica
researchProduct

INFLUENZA DELLA PENDENZA MEDIA DELLE CORRUGAZIONI DI UNA PARETE SCABRA SUL CAMPO DI MOTO TURBOLENTO

2008

Rough-wall turbulence structure Large Eddy SimulationSettore ICAR/01 - Idraulica
researchProduct

Analisi dei fenomeni di riempimento di reti di distribuzione idrica con il metodo delle caratteristiche.

2008

I sistemi di distribuzione della risorsa idrica possono essere classificati, in funzione del tipo di erogazione, in due principali categorie: erogazione “alla domanda” ed erogazione “turnata”. Sebbene il metodo di erogazione alla domanda garantisca la migliore e più efficiente gestione della rete idrica, gli enti gestori si trovano spesso costretti ad adottare sistemi di erogazione di tipo turnato. Tale tipo di distribuzione, caratterizzata da transitori di riempimento e vuotamento della rete, presenta diverse criticità principalmente connesse alla sperequazione tra gli utenti nell’accesso alla risorsa idrica e all’insorgere di sovrapressioni e depressioni durante i transitori. Nella memori…

Riempimento reti idrichemoto variometodo delle caratteristicheSettore ICAR/01 - Idraulica
researchProduct

Modelling analysis of distribution network filling process during intermittent supply

2009

The paper presents the modeling results of the filling process of a water distribution network subjected to intermittent supply. The local tanks built by users for reducing their vulnerability to intermittent supply increase user water demand at the beginning of the service period and the time required for completely fill the network. Such a delicate process is responsible of the inequalities taking part among users. Users located in advantaged positions can receive water resources soon after the beginning of the service period while disadvantaged users have to wait until the network is full. Such an highly dynamic process requires ad-hoc models to be developed in order to obtain reliable r…

network filling process intermittent supplymethod of characteristicsSettore ICAR/02 - Costruzioni Idrauliche E Marittime E IdrologiaSettore ICAR/01 - Idraulica
researchProduct

ANALYSIS OF THE EFFECT OF SINUOSITY IN THE DISCHARGE CAPACITY OF MEANDERING COMPOUND CHANNELS

2007

Compound channels numerical simulation meanderingSettore ICAR/01 - Idraulica
researchProduct

3D Numerical Simulation of Curved Open Channel Flows

2006

researchProduct

Wind profile restructuring due to the roughness reduction in land-water transition

2005

researchProduct

Un modello di simulazione dei fenomeni di riempimento di reti di distribuzione idrica

2005

researchProduct

4D Clifford algebra based on fixed-size representation

2008

Geometric algebra (also known as Clifford algebra) is a powerful mathematical tool that offers a natural and direct way to model geometric objects and their transformations. It is gaining growing attention in different research fields as physics, robotics, CAD/CAM and computer graphics. In particular, 4D geometric algebra implements homogeneous coordinates, which are used to model 3D scenery in most computer graphics applications. The research work on Clifford algebra is actually aimed at finding efficient implementations of the algebra. This paper wants to give a contribution to this research effort by proposing a direct hardware support for geometric algebra operators. The paper introduce…

Settore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniClifford algebra Geometric algebra Homogeneous model Fixed-size representation
researchProduct