6533b7d2fe1ef96bd125e2a0

RESEARCH PRODUCT

A coupled Finite Volume–Smoothed Particle Hydrodynamics method for incompressible flows

Mauro De MarchisBarbara MiliciChiara GianguzziEnrico NapoliAlessandra Monteleone

subject

DiscretizationSPHComputational MechanicsGeneral Physics and AstronomyCoupled FVM–SPH approachBoundary condition01 natural sciences010305 fluids & plasmasSettore ICAR/01 - IdraulicaSmoothed-particle hydrodynamicsPhysics and Astronomy (all)0103 physical sciencesComputational mechanicsMechanics of Material0101 mathematicsMirror particleComputational MechanicPhysicsFinite volume methodMechanical EngineeringMathematical analysisSmoothed Particle HydrodynamicComputer Science Applications1707 Computer Vision and Pattern RecognitionGridComputer Science ApplicationsComputational physics010101 applied mathematicsMechanics of MaterialsCompressibilityReduction (mathematics)Interpolation

description

Abstract An hybrid approach is proposed which allows to combine Finite Volume Method (FVM) and Smoothed Particle Hydrodynamics (SPH). The method is based on the partitioning of the computational domain into a portion discretized with a structured grid of hexahedral elements (the FVM-domain ) and a portion filled with Lagrangian particles (the SPH-domain ), separated by an interface made of triangular elements. A smooth transition between the solutions in the FVM and SPH regions is guaranteed by the introduction of a layer of grid cells in the SPH-domain and of a band of virtual particles in the FVM one (both neighboring the interface), on which the hydrodynamic variables are obtained through suitable interpolation procedures from the local solutions. Several test cases are used in order to test the efficiency and accuracy of the proposed hybrid method, showing that a significant reduction in the computational efforts can be achieved with respect to the standard SPH method.

10.1016/j.cma.2016.07.034http://hdl.handle.net/10447/202000