0000000000174454

AUTHOR

Alessandra Monteleone

0000-0001-7580-7368

A coupled Finite Volume–Smoothed Particle Hydrodynamics method for incompressible flows

Abstract An hybrid approach is proposed which allows to combine Finite Volume Method (FVM) and Smoothed Particle Hydrodynamics (SPH). The method is based on the partitioning of the computational domain into a portion discretized with a structured grid of hexahedral elements (the FVM-domain ) and a portion filled with Lagrangian particles (the SPH-domain ), separated by an interface made of triangular elements. A smooth transition between the solutions in the FVM and SPH regions is guaranteed by the introduction of a layer of grid cells in the SPH-domain and of a band of virtual particles in the FVM one (both neighboring the interface), on which the hydrodynamic variables are obtained throug…

research product

A multi-domain approach for smoothed particle hydrodynamics simulations of highly complex flows

Abstract An efficient and accurate method is proposed to solve the incompressible flow momentum and continuity equations in computational domains partitioned into subdomains in the framework of the smoothed particle hydrodynamics method. The procedure does not require any overlap of the subdomains, which would result in the increase of the computational effort. Perfectly matching solutions are obtained at the surfaces separating neighboring blocks. The block interfaces can be both planar and curved surfaces allowing to easily decompose even geometrically complex domains. The smoothing length of the kernel function is maintained constant in each subdomain, while changing between blocks where…

research product

Fluid-structure interaction approach with smoothed particle hydrodynamics and particle-spring systems

This paper presents a novel three-dimensional fluid-structure interaction (FSI) approach, where the meshless smoothed particle hydrodynamics (SPH) method is used to simulate the motion of incompressible fluid flows, whilst structures are represented by a simplified approach based on particle-spring systems. The proposed FSI technique allows to use independent spatial-temporal resolutions for the fluid and structural computational domains. The particle-spring elastic constants are calibrated and relationships with the mechanical material properties, Young's modulus and Poisson's ratio, are determined. Fluid and structure computational domains are separated by interfaces made of triangular el…

research product

SPH modeling of blood flow in cerebral aneurysms

Gli aneurismi cerebrali sono dilatazioni patologiche di arterie cerebrali. Queste patologie hanno un intrinseco rischio di rottura con conseguenti emorragie intracraniche. Sebbene i meccanismi di formazione, crescita e rottura degli aneurismi cerebrali non sono ancora del tutto compresi, è comunemente riconosciuto che in questi processi i fattori emodinamici giocano un ruolo molto importante. Le simulazioni numeriche possono fornire utili informazioni sull'emodinamica e possono essere usate per applicazioni cliniche. Nei tradizionali metodi numerici basati su una griglia di calcolo il processo di discretizzazione dei vasi cerebrali sui quali insiste un aneurisma è molto complesso. D’altra p…

research product

Effect of the Alterations in Contractility and Morphology Produced by Atrial Fibrillation on the Thrombosis Potential of the Left Atrial Appendage

Atrial fibrillation (AF) is a common arrhythmia mainly affecting the elderly population, which can lead to serious complications such as stroke, ischaemic attack and vascular dementia. These problems are caused by thrombi which mostly originate in the left atrial appendage (LAA), a small muscular sac protruding from left atrium. The abnormal heart rhythm associated with AF results in alterations in the heart muscle contractions and in some reshaping of the cardiac chambers. This study aims to verify if and how these physiological changes can establish hemodynamic conditions in the LAA promoting thrombus formation, by means of computational fluid dynamic (CFD) analyses. In particular, sinus …

research product

A distributed-memory MPI parallelization scheme for multi-domain incompressible SPH

A parallel scheme for a multi-domain truly incompressible smoothed particle hydrodynamics (SPH) approach is presented. The proposed method is developed for distributed-memory architectures through the Message Passing Interface (MPI) paradigm as communication between partitions. The proposal aims to overcome one of the main drawbacks of the SPH method, which is the high computational cost with respect to mesh-based methods, by coupling a multi-resolution approach with parallel computing techniques. The multi-domain approach aims to employ different resolutions by subdividing the computational domain into non-overlapping blocks separated by block interfaces. The particles belonging to differe…

research product

The Role of Patient-Specific Morphological Features of the Left Atrial Appendage on the Thromboembolic Risk Under Atrial Fibrillation

BackgroundA large majority of thrombi causing ischemic complications under atrial fibrillation (AF) originate in the left atrial appendage (LAA), an anatomical structure departing from the left atrium, characterized by a large morphological variability between individuals. This work analyses the hemodynamics simulated for different patient-specific models of LAA by means of computational fluid–structure interaction studies, modeling the effect of the changes in contractility and shape resulting from AF.MethodsThree operating conditions were analyzed: sinus rhythm, acute atrial fibrillation, and chronic atrial fibrillation. These were simulated on four patient-specific LAA morphologies, each…

research product

Inflow/outflow pressure boundary conditions for smoothed particle hydrodynamics simulations of incompressible flows

Abstract Open Boundary treatment is a well-known issue in the Smoothed Particle Hydrodynamics (SPH) method, mainly when the truly Incompressible (ISPH) approach is employed. In the paper a novel method is proposed to set pressure boundary conditions in the computational domain inlets and outlets, without requiring the velocity profile assignment. The new technique allows to treat in the same way inflow and outflow sections, effectively dealing with the release of new particles at inlets and the deactivation of the ones leaving the domain through the outlets. Several 3D numerical tests, both in the laminar and turbulent regimes, are carried out to validate the proposed numerical scheme consi…

research product

Numerical Simulations of the Hydrodynamics of the Abdominal Aorta Aneurysm (AAA) Using a Smoothed Particle Hydrodynamics Code with Deformable Wall Preliminary Results

We present some preliminary results of the numerical simulations of the hydrodynamic characteristics of an abdominal aorta aneurysm (AAA) patient specific test case. Images of the AAA lumen have been acquired in 10 discrete time-steps through a stabilized cardiac cycle by electrocardiogram-gated computer tomography angiography, and are used to approximate the in vivo, time dependent kinematic fields of the (internal) arterial wall. The flow field is simulated by a Smoothed Particle SPH numerical model, where the kinematics of the boundary of the computational domain (the internal aortic vessel) is the one computed by the above procedure. The outputs of the SPH model, i.e., pressure and flow…

research product

Modelling of thrombus formation using smoothed particle hydrodynamics method

In this paper a novel model, based on the smoothed particle hydrodynamics (SPH) method, is proposed to simulate thrombus formation. This describes the main phases of the coagulative cascade through the balance of four biochemical species and three type of platelets. SPH particles can switch from fluid to solid phase when specific biochemical and physical conditions are satisfied. The interaction between blood and the forming blood clot is easily handled by an innovative monolithic FSI approach. Fluid-solid coupling is modelled by introducing elastic binds between solid particles, without requiring detention and management of the interface between the two media. The proposed model is able to…

research product