6533b7d8fe1ef96bd126a354

RESEARCH PRODUCT

Fluid-structure interaction approach with smoothed particle hydrodynamics and particle-spring systems

Alessandra MonteleoneGuido BorinoEnrico NapoliGaetano Burriesci

subject

Mechanics of MaterialsMechanical EngineeringComputational MechanicsGeneral Physics and AstronomySmoothed particle hydrodynamics (SPH) Fluid-structure interaction (FSI) Particle-spring systems Particle-based FSI FSI benchmarkComputer Science ApplicationsSettore ICAR/01 - Idraulica

description

This paper presents a novel three-dimensional fluid-structure interaction (FSI) approach, where the meshless smoothed particle hydrodynamics (SPH) method is used to simulate the motion of incompressible fluid flows, whilst structures are represented by a simplified approach based on particle-spring systems. The proposed FSI technique allows to use independent spatial-temporal resolutions for the fluid and structural computational domains. The particle-spring elastic constants are calibrated and relationships with the mechanical material properties, Young's modulus and Poisson's ratio, are determined. Fluid and structure computational domains are separated by interfaces made of triangular elements whose position is updated during the simulation following the structural deformation. The coupling of the two media at the fluid-structure interfaces is handled by the introduction of solid and fluid boundary particles. This approach, automatically and without introducing further complexity, avoids the penetration of fluid particles into the solid domain. The efficiency and accuracy and the present method are validated with analytical/benchmark solutions from the literature. (c) 2022 Elsevier B.V. All rights reserved.

10.1016/j.cma.2022.114728http://hdl.handle.net/10447/569870