0000000001005507

AUTHOR

Maxime Bordet

showing 12 related works from this author

A nonlinear electronic circuit mimicking the neuronal activity in presence of noise

2013

We propose a nonlinear electronic circuit simulating the neuronal activity in a noisy environment. This electronic circuit is ruled by the set of Bonhaeffer-Van der Pol equations and is excited with a white gaussian noise, that is without external deterministic stimuli. Under these conditions, our circuits reveals the Coherence Resonance signature, that is an optimum of regularity in the system response for a given noise intensity.

Coherence ResonanceStochastic resonanceneural network[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph]02 engineering and technologyTopology01 natural sciencesNoise (electronics)symbols.namesakeComputer Science::Emerging TechnologiesNoise generator[NLIN.NLIN-PS]Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS]Control theory[ PHYS.PHYS.PHYS-BIO-PH ] Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph]0103 physical sciences[NLIN.NLIN-PS] Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS]0202 electrical engineering electronic engineering information engineering[ NLIN.NLIN-PS ] Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS]Value noisestochastic resonance010306 general physicsComputingMilieux_MISCELLANEOUSPhysics[PHYS.PHYS.PHYS-BIO-PH] Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph]020208 electrical & electronic engineeringShot noiseWhite noiseNoise floor[SPI.TRON] Engineering Sciences [physics]/Electronics[SPI.TRON]Engineering Sciences [physics]/Electronics[ SPI.TRON ] Engineering Sciences [physics]/ElectronicsGaussian noisesymbolsnonlinear circuit
researchProduct

Ghost stochastic resonance in FitzHugh–Nagumo circuit

2014

International audience; The response of a neural circuit submitted to a bi-chromatic stimulus and corrupted by noise is investigated. In the presence of noise, when the spike firing of the circuit is analysed, a frequency not present at the circuit input appears. For a given range of noise intensities, it is shown that this ghost frequency is almost exclusively present in the interspike interval distribution. This phenomenon is for the first time shown experimentally in a FitzHugh-Nagumo circuit.

noise[ INFO.INFO-TS ] Computer Science [cs]/Signal and Image ProcessingInterval distribution[ NLIN.NLIN-CD ] Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD][ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processingStochastic ResonanceComputer Science::Hardware ArchitectureComputer Science::Emerging Technologies[NLIN.NLIN-PS]Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS][INFO.INFO-TS]Computer Science [cs]/Signal and Image ProcessingElectronic engineering[ NLIN.NLIN-PS ] Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS]Electrical and Electronic EngineeringMathematicsCircuit noiseQuantitative Biology::Neurons and CognitionArtificial neural networkStochastic processMathematical analysisneural networksFitzhugh nagumo[ SPI.TRON ] Engineering Sciences [physics]/Electronics[SPI.TRON]Engineering Sciences [physics]/ElectronicsHarmonics[NLIN.NLIN-CD]Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD]Nonlinear network analysis[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingElectronics Letters
researchProduct

Experimental and numerical enhancement of Vibrational Resonance in a neural circuit

2012

International audience; A neural circuit exactly ruled by the FitzHugh-Nagumo equations is excited by a biharmonic signal of frequencies f and F with respective amplitudes A and B. The magnitude spectrum of the circuit response is estimated at the low frequency driving f and presents a resonant behaviour versus the amplitude B of the high frequency. For the first time, it is shown experimentally that this Vibrational Resonance effect is much more pronounced when the two frequencies are multiple. This novel enhancement is also confirmed by numerical predictions. Applications of this nonlinear effect to the detection of weak stimuli are finally discussed.

[ PHYS.COND.CM-DS-NN ] Physics [physics]/Condensed Matter [cond-mat]/Disordered Systems and Neural Networks [cond-mat.dis-nn]02 engineering and technologyLow frequency01 natural sciencesSignalVibrational ResonanceNuclear magnetic resonance[NLIN.NLIN-PS]Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS]0103 physical sciences0202 electrical engineering electronic engineering information engineeringVibrational resonance[ NLIN.NLIN-PS ] Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS][PHYS.COND.CM-DS-NN]Physics [physics]/Condensed Matter [cond-mat]/Disordered Systems and Neural Networks [cond-mat.dis-nn]Electrical and Electronic Engineering010306 general physicsMathematicsQuantitative Biology::Neurons and Cognition020208 electrical & electronic engineering[SPI.TRON]Engineering Sciences [physics]/ElectronicsComputational physics[ SPI.TRON ] Engineering Sciences [physics]/ElectronicsNonlinear systemAmplitudeExcited stateNonlinear resonanceBiharmonic equationNonlinear dynamical systemsFitzHugh-Nagumo
researchProduct

Noise effect in a FitzHugh-Nagumo circuit driven by a bichromatic signal

2013

We analyze the response of a nonlinear circuit exactly ruled by the FitzHugh-Nagumo equations. This circuit is submitted to a bichromatic signal including a high frequency and a low frequency. In absence of noise, we show that for an appropriate amplitude of the high frequency driving, the response of the circuit estimated at the low frequency can be optimized via the phenomenon of vibrational resonance. Next, we show that under certain conditions, noise can contribute to the effect of vibrational resonance. Colored noise is also considered. Our experimental results are confirmed by a numerical analysis.

neural networkStochastic resonance[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph]Acoustics01 natural sciencesNoise (electronics)010305 fluids & plasmas[NLIN.NLIN-PS]Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS]Noise generator[ PHYS.PHYS.PHYS-BIO-PH ] Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph][NLIN.NLIN-PS] Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS]0103 physical sciencesPhase noise[ NLIN.NLIN-PS ] Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS]010306 general physicsComputingMilieux_MISCELLANEOUSPhysics[PHYS.PHYS.PHYS-BIO-PH] Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph]Noise spectral densityQuantum noiseNoise floor[SPI.TRON] Engineering Sciences [physics]/Electronics[ SPI.TRON ] Engineering Sciences [physics]/Electronics[SPI.TRON]Engineering Sciences [physics]/ElectronicsBurst noiseQuantum electrodynamicsnonlinear circuitStochastic resonance2013 22nd International Conference on Noise and Fluctuations (ICNF)
researchProduct

On the correlation between phase-locking modes and Vibrational Resonance in a neuronal model

2018

International audience; We numerically and experimentally investigate the underlying mechanism leading to multiple resonances in the FitzHugh-Nagumo model driven by a bichromatic excitation. Using a FitzHugh-Nagumo circuit, we first analyze the number of spikes triggered by the system in response to a single sinusoidal wave forcing. We build an encoding diagram where different phase-locking modes are identified according to the amplitude and frequency of the sinusoidal excitation. Next, we consider the bichromatic driving which consists in a low frequency sinusoidal wave perturbed by an additive high frequency signal. Beside the classical Vibrational Resonance phenomenon, we show in real ex…

PhysicsNumerical AnalysisQuantitative Biology::Neurons and CognitionApplied MathematicsPerturbation (astronomy)phase locking modesLow frequencyneural networks01 natural sciences010305 fluids & plasmasComputational physicsCorrelationNonlinear systemnonlinear dynamicsSine waveAmplitude[NLIN.NLIN-PS]Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS]Control theoryModeling and Simulation0103 physical sciencesVibrational resonance[ NLIN.NLIN-PS ] Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS]010306 general physicsvibrational resonanceExcitation
researchProduct

Experimental and numerical study of noise effects in a FitzHugh–Nagumo system driven by a biharmonic signal

2013

Abstract Using a nonlinear circuit ruled by the FitzHugh–Nagumo equations, we experimentally investigate the combined effect of noise and a biharmonic driving of respective high and low frequency F and f. Without noise, we show that the response of the circuit to the low frequency can be maximized for a critical amplitude B∗ of the high frequency via the effect of Vibrational Resonance (V.R.). We report that under certain conditions on the biharmonic stimulus, white noise can induce V.R. The effects of colored noise on V.R. are also discussed by considering an Ornstein–Uhlenbeck process. All experimental results are confirmed by numerical analysis of the system response.

PhysicsArtificial neural networkGeneral MathematicsApplied MathematicsNumerical analysisAcousticsMathematical analysisGeneral Physics and AstronomyStatistical and Nonlinear PhysicsWhite noiseLow frequencyNonlinear systemAmplitudeColors of noiseBiharmonic equationChaos, Solitons & Fractals
researchProduct

Experimental and numerical study of noise effects in a FitzHugh-Nagumo system driven by a biharmonic signal

2013

Using a nonlinear circuit ruled by the FitzHugh-Nagumo equations, we experimentally investigate the combined effect of noise and a biharmonic driving of respective high and low frequency F and f. Without noise, we show that the response of the circuit to the low frequency can be maximized for a critical amplitude B of the high frequency via the effect of Vibrational Resonance (V.R.). We report that under certain conditions on the biharmonic stimulus, white noise can induce V.R. The effects of colored noise on V.R. are also discussed by considering an Ornstein-Uhlenbeck process. All experimental results are confirmed by numerical analysis of the system response.

Stochastic Resonancenoisevibrational Resonance[PHYS.PHYS.PHYS-BIO-PH] Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph]neural network[NLIN.NLIN-PS] Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS]nonlinear circuits[SPI.TRON] Engineering Sciences [physics]/Electronics
researchProduct

Encodage d'une information sinusoidale dans un circuit neuronal et résonances induites par une perturbation

2019

Notre étude porte sur un circuit dont la tension obéit à un système d’équations correspondant à unmodèle de neurone. Nous analysons expérimentalement et en simulation numérique comment ce circuit neuronalencode un stimuli sinusoidal en train de potentiels d’action. Nous présentons un diagramme d’encodage où apparaissentdifférentes transitions selon la fréquence du stimuli. Nous montrons ensuite qu’une perturbation hautefréquence peut améliorer la détection d’un stimuli sinusoidal via le phénomène de Résonance Vibrationnelle. Eneffet, la perturbation peut induire des résonances qui coincident avec les transitions observées dans le diagrammed’encodage.

[NLIN.NLIN-AO] Nonlinear Sciences [physics]/Adaptation and Self-Organizing Systems [nlin.AO]Neurone artificiel[NLIN.NLIN-PS] Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS][SCCO.NEUR] Cognitive science/Neuroscience
researchProduct

Noise contribution to resonance phenomena and information propagation in non linear electronic networks

2015

This manuscript presents research aiming to show possible positive effects of deterministic and stochastic perturbations on the responses of different nonlinear systems. To that end, both numerical and experimental studies were carried out on two kinds of structures : an elementary electronic FitzHugh-Nagumo oscillator and an electrical line developed by resistively coupling 45 elementary cells. In the first section, the elementary cell characterization was undertaken in a deterministic regime. In the presence of a bichromatic stimulus, it is shown that when the low frequency component is subthreshold, its detection can be maximized for an optimal magnitude of the second component thanks to…

Vibrational resonanceGhost stochastic resonanceFrequency resonanceRésonance fréquentielleDynamique non linéaireDeterministic perturbationProcessus d’Ornstein-UhlenbeckVibrational propagationPerturbation déterministeElectronic circuitWhite noiseCircuit électroniqueColored noisePropagation vibrationnelle[SPI.TRON] Engineering Sciences [physics]/Electronics[SPI.TRON]Engineering Sciences [physics]/Electronics[ SPI.TRON ] Engineering Sciences [physics]/ElectronicsRésonance vibrationnellePropagation assistée par le bruitNonlinear dynamicsBruit coloréOrnstein-Uhlenbeck processBruit blancNoise assisted propagationRésonance stochastique fantômeFitzHugh-Nagumo
researchProduct

Impact of perturbations on the neuron response

2017

International audience; We propose an overview of the effects of deterministic and stochastic perturbations on the response of a neuron. Our study is based on numerical simulations and experiments with an elementary neural circuit. We use different excitations to highlight various phenomena such as Mode locking, Vibrational Resonance, Ghost Stochastic Resonance... We close the study with a lattice of coupled circuit.

[SDV.IB] Life Sciences [q-bio]/Bioengineering[SDV.IB.IMA] Life Sciences [q-bio]/Bioengineering/Imaging[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging[SDV.IB]Life Sciences [q-bio]/BioengineeringNeurones[ SDV.IB ] Life Sciences [q-bio]/Bioengineering[ SDV.IB.IMA ] Life Sciences [q-bio]/Bioengineering/Imaging
researchProduct

Effet d’une perturbation haute fréquence sur la réponse du système de FitzHugh-Nagumo soumis à une excitation basse fréquence subliminale : simulatio…

2015

National audience; Dans cette communication, nous menons conjointement une étude en simulation numérique ainsi qu’une étude expérimentale de la réponse du système de FitzHugh-Nagumo soumis à une excitation bi-chromatique. Cette excitation est constituée d’un signal basse fréquence perturbé par une composante haute fréquence additive. Selon l’amplitude B de la perturbation haute fréquence, la réponse du système peut être optimisée à la basse fréquence. Un choix approprié du rapport des fréquences d’excitations peut conduire à une meilleure optimisation de la réponse du système.

[NLIN.NLIN-CD] Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD][NLIN.NLIN-PS]Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS][NLIN.NLIN-PS] Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS][ NLIN.NLIN-CD ] Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD][NLIN.NLIN-CD]Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD]système neuronaux[ NLIN.NLIN-PS ] Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS][SPI.TRON] Engineering Sciences [physics]/ElectronicsResonance Vibrationnel[ SPI.TRON ] Engineering Sciences [physics]/Electronics[SPI.TRON]Engineering Sciences [physics]/Electronics
researchProduct

COLORED NOISE EFFECTS ON GHOST STOCHASTIC RESONANCE

2014

International audience; We analyze the Ghost Stochastic Resonance (GSR) effect in an electronic circuit exactly ruled by the FitzHugh-Nagumo (FHN) equations, both numerically and experimentally. When the circuit is excited with a bichromatic driving with two close frequencies, we show that for an appropriate noise intensity the circuit response exhibits a ghost frequency which is not present in the biharmonic input signal. In this paper, we highlight the e ects of colored noise on GSR.

[ INFO.INFO-TS ] Computer Science [cs]/Signal and Image Processing[INFO.INFO-TS] Computer Science [cs]/Signal and Image Processing[ NLIN.NLIN-CD ] Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD][ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing[SPI.TRON] Engineering Sciences [physics]/Electronics[ SPI.TRON ] Engineering Sciences [physics]/Electronics[SPI.TRON]Engineering Sciences [physics]/Electronics[NLIN.NLIN-CD] Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD][INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing[NLIN.NLIN-PS]Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS][NLIN.NLIN-PS] Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS][NLIN.NLIN-CD]Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD][ NLIN.NLIN-PS ] Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS][SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing
researchProduct