0000000001008781

AUTHOR

P. Perio

showing 11 related works from this author

Online 222 Rn removal by cryogenic distillation in the XENON100 experiment

2017

We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column was integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant 222 Rn background originating from radon emanation. After inserting an auxiliary 222 Rn emanation source in the gas loop, we determined a radon reduction factor of R>27 (95% C.L.) for the distillation column by monitoring the 222 Rn activity concentration inside the XENON100 detector.

XenonPhysics and Astronomy (miscellaneous)WimpDirect SearchDark MatterTPCEngineering (miscellaneous)European Physical Journal C
researchProduct

Constraining the spin-dependent WIMP-nucleon cross sections with XENON1T

2019

We report the first experimental results on spin-dependent elastic weakly interacting massive particle (WIMP) nucleon scattering from the XENON1T dark matter search experiment. The analysis uses the full ton year exposure of XENON1T to constrain the spin-dependent proton-only and neutron-only cases. No significant signal excess is observed, and a profile likelihood ratio analysis is used to set exclusion limits on the WIMP-nucleon interactions. This includes the most stringent constraint to date on the WIMP-neutron cross section, with a minimum of 6.3 × 10−42 cm2 at 30 GeV/c2 and 90% confidence level. The results are compared with those from collider searches and used to exclude new paramet…

WIMP nucleon: interactionWIMP nucleon: scatteringParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)IsoscalarDark matterNuclear TheoryMassive particleGeneral Physics and AstronomyFOS: Physical sciencesParameter spacedark matter: direct detectionGravitation and Astrophysicsspin: dependence01 natural scienceslaw.inventionHigh Energy Physics - Phenomenology (hep-ph)WIMPlawisoscalar0103 physical sciencesS046DM1mediation010306 general physicsColliderPseudovectorPhysicsS030DN2S030DN1S030DP3S030DN3S030DP2S030DP1WIMP nucleon: cross sectionaxial-vectorHigh Energy Physics - PhenomenologyWIMPs Spin Dependent Cross Sections Neutron Cross Sections Likelihood methoddark matter: scattering[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentNucleon[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Cosmology and Nongalactic Astrophysicsexperimental results
researchProduct

Online $$^{222}$$ 222 Rn removal by cryogenic distillation in the XENON100 experiment

2017

researchProduct

First Results on the Scalar WIMP-Pion Coupling, Using the XENON1T Experiment

2018

We present first results on the scalar coupling of weakly interacting massive particles (WIMPs) to pions from 1 t yr of exposure with the XENON1T experiment. This interaction is generated when the WIMP couples to a virtual pion exchanged between the nucleons in a nucleus. In contrast to most nonrelativistic operators, these pion-exchange currents can be coherently enhanced by the total number of nucleons and therefore may dominate in scenarios where spin-independent WIMP-nucleon interactions are suppressed. Moreover, for natural values of the couplings, they dominate over the spin-dependent channel due to their coherence in the nucleus. Using the signal model of this new WIMP-pion channel, …

Nuclear TheoryPhysics::Instrumentation and DetectorsNuclear TheoryGeneral Physics and Astronomy01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)WIMPPions[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear ExperimentS030UDMPhysicsStarke Wechselwirkung und exotische Kerne – Abteilung BlaumAstrophysics::Instrumentation and Methods for AstrophysicsnucleonsuppressionHigh Energy Physics - PhenomenologyWeakly interacting massive particlesmedicine.anatomical_structureWeakly interacting massive particlesNucleonCoherence (physics)Astrophysics - Cosmology and Nongalactic AstrophysicsWIMP nucleon: interactionParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]FOS: Physical sciencesWIMP: massspin: dependenceGravitation and Astrophysicsoperator: nonrelativisticDark matter Particle dark matter Pions Weakly interacting massive particles Dark matter detectorsNuclear Theory (nucl-th)PionParticle dark matter0103 physical sciencesmedicineDark mattercross section: upper limit010306 general physicsCouplingDark matter detectorsnucleusScalar (physics)coherenceDark Matter WIMP-Pion coupling Xenon Direct seartch[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experiment[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Nucleus
researchProduct

Removing krypton from xenon by cryogenic distillation to the ppq level

2017

The XENON1T experiment aims for the direct detection of dark matter in a detector filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the β -emitter 85 Kr which is present in the xenon. For XENON1T a concentration of natural krypton in xenon natKr/Xe<200ppq (parts per quadrillion, 1 ppq =10−15mol/mol) is required. In this work, the design, construction and test of a novel cryogenic distillation column using the common McCabe–Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4⋅10⁵ with thermodynamic stabili…

7. Clean energy
researchProduct

XENON100 dark matter results from a combination of 477 live days

2016

We report on WIMP search results of the XENON100 experiment, combining three runs summing up to 477 live days from January 2010 to January 2014. Data from the first two runs were already published. A blind analysis was applied to the last run recorded between April 2013 and January 2014 prior to combining the results. The ultra-low electromagnetic background of the experiment, ~$5 \times 10^{-3}$ events/(keV$_{\mathrm{ee}}\times$kg$\times$day) before electronic recoil rejection, together with the increased exposure of 48 kg $\times$ yr improves the sensitivity. A profile likelihood analysis using an energy range of (6.6 - 43.3) keV$_{\mathrm{nr}}$ sets a limit on the elastic, spin-independe…

Scattering cross-sectionPhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics - Instrumentation and DetectorsProton010308 nuclear & particles physicsDark matterFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)01 natural sciences7. Clean energyXENON DARK MATTER WIMP TPCNuclear physicsRecoilWIMPLikelihood analysis0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Sensitivity (control systems)010306 general physicsEnergy (signal processing)Astrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review D
researchProduct

Material radioassay and selection for the XENON1T dark matter experiment

2017

The XENON1T dark matter experiment aims to detect weakly interacting massive particles (WIMPs) through low-energy interactions with xenon atoms. To detect such a rare event necessitates the use of radiopure materials to minimize the number of background events within the expected WIMP signal region. In this paper we report the results of an extensive material radioassay campaign for the XENON1T experiment. Using gamma-ray spectroscopy and mass spectrometry techniques, systematic measurements of trace radioactive impurities in over one hundred samples within a wide range of materials were performed. The measured activities allowed for stringent selection and placement of materials during the…

Physics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsDark matterMonte Carlo methodmeasurement methodsFOS: Physical scienceschemistry.chemical_elementRadiopuritylcsh:AstrophysicsWIMP: detectorSciences de l'ingénieur01 natural sciencesgamma ray: energy spectrumNuclear physicsmass spectrumXENONXenonWIMPlcsh:QB460-4660103 physical sciencesDark Matterlcsh:Nuclear and particle physics. Atomic energy. Radioactivity[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsSpectroscopy[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Engineering (miscellaneous)background: radioactivityPhysicsRange (particle radiation)Physique010308 nuclear & particles physicsDetectorInstrumentation and Detectors (physics.ins-det)AstronomiesensitivitychemistryWeakly interacting massive particleslcsh:QC770-798TPCnumerical calculations: Monte Carlo
researchProduct

DARWIN: Towards the ultimate dark matter detector

2016

DARk matter WImp search with liquid xenoN (DARWIN) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the xenon will be observed by VUV sensitive, ultra-low background photosensors. Besides its excellent sensitivity to WIMPs above a mass of 5 GeV/c2, such a detector with its large mass, low-energy …

Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsdouble beta decay7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentPhysics Particles & FieldsNeutrino detectorHigh Energy Physics - Experiment (hep-ex)XenonWIMPPHOTOMULTIPLIERAXIONSphysics.ins-detsolar and atmospheric neutrinosPhysicsDark matter detectorTime projection chamberdark matter detectorsPhysicsSolar and atmospheric neutrinoInstrumentation and Detectors (physics.ins-det)Nuclear & Particles PhysicsNeutrino detectorSOLAR NEUTRINOSGASPhysical SciencesNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsGRAN SASSODark matter detectors; Double beta decay; Neutrino detectors; Solar and atmospheric neutrinosDark matterchemistry.chemical_elementFOS: Physical sciencesAstronomy & AstrophysicsLIQUID-XENON DETECTOR0202 Atomic Molecular Nuclear Particle And Plasma PhysicsSettore FIS/05 - Astronomia e AstrofisicaSEARCH0103 physical sciencesIsotopes of xenonZEPLIN-III[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsAxionInstrumentation and Methods for Astrophysics (astro-ph.IM)Science & Technology010308 nuclear & particles physicshep-exAstronomyAstronomy and Astrophysics0201 Astronomical And Space ScienceschemistryHigh Energy Physics::ExperimentSCINTILLATIONneutrino detectorsastro-ph.IMJournal of Cosmology and Astroparticle Physics
researchProduct

Removing krypton from xenon by cryogenic distillation to the ppq level

2017

The XENON1T experiment aims for the direct detection of dark matter in a detector filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the β-emitter 85Kr which is present in the xenon. For XENON1T a concentration of natural krypton in xenon natKr/Xe<200ppq (parts per quadrillion, 1ppq=10-15mol/mol) is required. In this work, the design, construction and test of a novel cryogenic distillation column using the common McCabe–Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4 · 10 5 with thermodynamic stability a…

CryostatPhysics - Instrumentation and DetectorsXenonPhysics and Astronomy (miscellaneous)WIMPDark matterAnalytical chemistryFOS: Physical scienceschemistry.chemical_elementlcsh:AstrophysicsWeakly Interact Massive ParticleSciences de l'ingénieur01 natural sciences7. Clean energyXenonlcsh:QB460-4660103 physical sciencesDark Matterlcsh:Nuclear and particle physics. Atomic energy. RadioactivitySensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsComputer science information & general worksEngineering (miscellaneous)Liquid XenonComputingMilieux_MISCELLANEOUSPhysicsAir separationPhysique010308 nuclear & particles physicsDistillation ColumnKryptonKryptonOrder (ring theory)Instrumentation and Detectors (physics.ins-det)AstronomiechemistryDirect Searchddc:000lcsh:QC770-798TPCOrder of magnitude
researchProduct

Online ^{222}Rn removal by cryogenic distillation in the XENON100 experiment

2017

International audience; We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column was integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant$^{222}$ Rn background originating from radon emanation. After inserting an auxiliary$^{222}$ Rn emanation source in the gas loop, we determined a radon reduction factor of $R\,>\,27$ (95% C.L.) for the distillation column by monitoring the$^{222}$ Rn activity concentration inside the XENON100 detector.

xenon: liquidradon: admixturePhysics - Instrumentation and DetectorsPhysicsFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)XENONmonitoringefficiencycryogenicsgasddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]background: radioactivity[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]
researchProduct

First Dark Matter Search Results from the XENON1T Experiment

2017

We report the first dark matter search results from XENON1T, a ∼2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy and the first ton-scale detector of this kind. The blinded search used 34.2 live days of data acquired between November 2016 and January 2017. Inside the (1042±12)-kg fiducial mass and in the [5,40] keVnr energy range of interest for weakly interacting massive particle (WIMP) dark matter searches, the electronic recoil background was (1.93±0.25)×10-4 events/(kg×day×keVee), the lowest ever achieved in such a dark matter detector. A profile likelihood analysis shows that the data are consisten…

Xenon[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Massive particleGeneral Physics and Astronomy01 natural sciencesWIMP: dark matterHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)RecoilXenonWIMPS046DM2[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Dark Matter[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]PhysicsRange (particle radiation)Time projection chamberDetectorHigh Energy Physics - Phenomenologydark matter: scatteringTPCAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - Cosmology and Nongalactic AstrophysicsWIMP nucleon: interactionParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)WIMPDark matterFOS: Physical scienceschemistry.chemical_elementWIMP: massS030DI2Nuclear physicsPhysics and Astronomy (all)[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciencesrecoil[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Physique010308 nuclear & particles physicsbackgrounddark matter: detectorAstronomieGran SassochemistryDirect Searchtime projection chamber: xenoninterpretation of experiments: XENON[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct