0000000001010619
AUTHOR
S. Mishchenko
Varieties with at most quadratic growth
Let V be a variety of non necessarily associative algebras over a field of characteristic zero. The growth of V is determined by the asymptotic behavior of the sequence of codimensions cn(V); n = 1; 2, … and here we study varieties of polynomial growth. Recently, for any real number a, 3 < a < 4, a variety V was constructed satisfying C1n^a < cn(V) < C2n^a; for some constants C1;C2. Motivated by this result here we try to classify all possible growth of varieties V such that cn(V) < Cn^a; with 0 < a < 2, for some constant C. We prove that if 0 < a < 1 then, for n large, cn(V) ≤ 1, whereas if V is a commutative variety and 1 < a < 2, then lim logn cn(V) = 1 o…
Polynomial growth of the codimensions: a characterization
Let A A be a not necessarily associative algebra over a field of characteristic zero. Here we characterize the T-ideal of identities of A A in case the corresponding sequence of codimensions is polynomially bounded.
POLYNOMIAL IDENTITIES ON SUPERALGEBRAS AND ALMOST POLYNOMIAL GROWTH
Let A be a superalgebra over a field of characteristic zero. In this paper we investigate the graded polynomial identities of A through the asymptotic behavior of a numerical sequence called the sequence of graded codimensions of A. Our main result says that such sequence is polynomially bounded if and only if the variety of superalgebras generated by A does not contain a list of five superalgebras consisting of a 2-dimensional algebra, the infinite dimensional Grassmann algebra and the algebra of 2 × 2 upper triangular matrices with trivial and nontrivial gradings. Our main tool is the representation theory of the symmetric group.
On Almost Nilpotent Varieties of Linear Algebras
A variety \(\mathcal {V}\) is almost nilpotent if it is not nilpotent but all proper subvarieties are nilpotent. Here we present the results obtained in recent years about almost nilpotent varieties and their classification.
Polynomial codimension growth and the Specht problem
Abstract We construct a continuous family of algebras over a field of characteristic zero with slow codimension growth bounded by a polynomial of degree 4. This is achieved by building, for any real number α ∈ ( 0 , 1 ) a commutative nonassociative algebra A α whose codimension sequence c n ( A α ) , n = 1 , 2 , … , is polynomially bounded and lim log n c n ( A α ) = 3 + α . As an application we are able to construct a new example of a variety with an infinite basis of identities.
ON THE COLENGTH OF A VARIETY OF LIE ALGEBRAS
We study the variety of Lie algebras defined by the identity [Formula: see text] over a field of characteristic zero. We prove that, as in the associative case, in the nth cocharacter χn of this variety, every irreducible Sn-character appears with polynomially bounded multiplicity (not greater than n2). Anyway, surprisingly enough, we also show that the colength of this variety, i.e. the total number of irreducibles appearing in χn is asymptotically equal to [Formula: see text].
Codimension and colength sequences of algebras and growth phenomena
We consider non necessarily associative algebras over a field of characteristic zero and their polynomial identities. Here we describe some of the results obtained in recent years on the sequence of codimensions and the sequence of colengths of an algebra.
On the growth of the identities of algebras
On almost nilpotent varieties of subexponential growth
Abstract Let N 2 be the variety of left-nilpotent algebras of index two, that is the variety of algebras satisfying the identity x ( y z ) ≡ 0 . We introduce two new varieties, denoted by V sym and V alt , contained in the variety N 2 and we prove that V sym and V alt are the only two varieties almost nilpotent of subexponential growth.
Polynomial Identities of Algebras of Small Dimension
It is well known that given an associative algebra or a Lie algebra A, its codimension sequence c n (A) is either polynomially bounded or grows at least as fast as 2 n . In [2] we proved that for a finite dimensional (in general nonassociative) algebra A, dim A = d, the sequence c n (A) is also polynomially bounded or c n (A) ≥ a n asymptotically, for some real number a > 1 which might be less than 2. Nevertheless, for d = 2, we may take a = 2. Here we prove that for d = 3 the same conclusion holds. We also construct a five-dimensional algebra A with c n (A) < 2 n .
Codimension growth of two-dimensional non-associative algebras
Let F be a field of characteristic zero and let A be a two-dimensional non-associative algebra over F. We prove that the sequence c n (A), n =1,2,..., of codimensions of A is either bounded by n + 1 or grows exponentially as 2 n . We also construct a family of two-dimensional algebras indexed by rational numbers with distinct T-ideals of polynomial identities and whose codimension sequence is n + 1, n > 2.
Varieties with at most cubic growth
Abstract Let V be a variety of non necessarily associative algebras over a field of characteristic zero. The growth of V is determined by the asymptotic behavior of the sequence of codimensions c n ( V ) , n = 1 , 2 , … , and here we study varieties of polynomial growth. We classify all possible growth of varieties V of algebras satisfying the identity x ( y z ) ≡ 0 such that c n ( V ) C n α , with 1 ≤ α 3 , for some constant C. We prove that if 1 ≤ α 2 then c n ( V ) ≤ C 1 n , and if 2 ≤ α 3 , then c n ( V ) ≤ C 2 n 2 , for some constants C 1 , C 2 .
A Star-Variety With Almost Polynomial Growth
Abstract Let F be a field of characteristic zero. In this paper we construct a finite dimensional F -algebra with involution M and we study its ∗ -polynomial identities; on one hand we determine a generator of the corresponding T -ideal of the free algebra with involution and on the other we give a complete description of the multilinear ∗ -identities through the representation theory of the hyperoctahedral group. As an outcome of this study we show that the ∗ -variety generated by M , var( M , ∗ ) has almost polynomial growth, i.e., the sequence of ∗ -codimensions of M cannot be bounded by any polynomial function but any proper ∗ -subvariety of var( M , ∗ ) has polynomial growth. If G 2 is…
Correspondence between some metabelian varieties and left nilpotent varieties
Abstract In the class of left nilpotent algebras of index two it was proved that there are no varieties of fractional polynomial growth ≈ n α with 1 α 2 and 2 α 3 instead it was established the existence of a variety of fractional polynomial growth with α = 7 2 . In this paper we investigate similar problems for varieties of commutative or anticommutative metabelian algebras. We construct a correspondence between left nilpotent algebras of index two and commutative metabelian algebras or anticommutative metabelian algebras and we prove that the codimensions sequences of the corresponding algebras coincide up to a constant. This allows us to transfer the above results concerning varieties of…
Algebras with intermediate growth of the codimensions
AbstractLet F be a field of characteristic zero and let A be an F-algebra. The polynomial identities satisfied by A can be measured through the asymptotic behavior of the sequence of codimensions and the sequence of colengths of A. For finite dimensional algebras we show that the colength sequence of A is polynomially bounded and the codimension sequence cannot have intermediate growth. We then prove that for general nonassociative algebras intermediate growth of the codimensions is allowed. In fact, for any real number 0<β<1, we construct an algebra A whose sequence of codimensions grows like nnβ.
A Leibniz variety with almost polynomial growth
Abstract Let F be a field of characteristic zero. In this paper we study the variety of Leibniz algebras V ˜ 1 defined by the identity y 1 ( y 2 y 3 ) ( y 4 y 5 ) ≡ 0 . We give a complete description of the space of multilinear identities in the language of Young diagrams through the representation theory of the symmetric group. As an outcome we show that the variety V ˜ 1 has almost polynomial growth, i.e., the sequence of codimensions of V ˜ 1 cannot be bounded by any polynomial function but any proper subvariety of V ˜ 1 as polynomial growth.
Group Actions and Asymptotic Behavior of Graded Polynomial Identities
Super-cocharacters, star-cocharacters and multiplicities bounded by one
Codimensions of algebras and growth functions
Abstract Let A be an algebra over a field F of characteristic zero and let c n ( A ) , n = 1 , 2 , … , be its sequence of codimensions. We prove that if c n ( A ) is exponentially bounded, its exponential growth can be any real number >1. This is achieved by constructing, for any real number α > 1 , an F-algebra A α such that lim n → ∞ c n ( A α ) n exists and equals α. The methods are based on the representation theory of the symmetric group and on properties of infinite Sturmian and periodic words.
An almost nilpotent variety of exponent 2
We construct a non-associative algebra A over a field of characteristic zero with the following properties: if V is the variety generated by A, then V has exponential growth but any proper subvariety of V is nilpotent. Moreover, by studying the asymptotics of the sequence of codimensions of A we deduce that exp(V) = 2.
POLYNOMIAL GROWTH OF THE*-CODIMENSIONS AND YOUNG DIAGRAMS
Let A be an algebra with involution * over a field F of characteristic zero and Id(A, *) the ideal of the free algebra with involution of *-identities of A. By means of the representation theory of the hyperoctahedral group Z 2wrS n we give a characterization of Id(A, *) in case the sequence of its *-codimensions is polynomially bounded. We also exhibit an algebra G 2 with the following distinguished property: the sequence of *-codimensions of Id(G 2, *) is not polynomially bounded but the *-codimensions of any T-ideal U properly containing Id(G 2, *) are polynomially bounded.
An uncountable family of almost nilpotent varieties of polynomial growth
A non-nilpotent variety of algebras is almost nilpotent if any proper subvariety is nilpotent. Let the base field be of characteristic zero. It has been shown that for associative or Lie algebras only one such variety exists. Here we present infinite families of such varieties. More precisely we shall prove the existence of 1) a countable family of almost nilpotent varieties of at most linear growth and 2) an uncountable family of almost nilpotent varieties of at most quadratic growth.
Degrees of irreducible characters of the symmetric group and exponential growth
We consider sequences of degrees of ordinary irreducible S n S_n - characters. We assume that the corresponding Young diagrams have rows and columns bounded by some linear function of n n with leading coefficient less than one. We show that any such sequence has at least exponential growth and we compute an explicit bound.