0000000001018645

AUTHOR

Michèle Pelletier

showing 5 related works from this author

A generalization of Françoise's algorithm for calculating higher order Melnikov functions

2002

Abstract In [J. Differential Equations 146 (2) (1998) 320–335], Francoise gives an algorithm for calculating the first nonvanishing Melnikov function Ml of a small polynomial perturbation of a Hamiltonian vector field and shows that Ml is given by an Abelian integral. This is done under the condition that vanishing of an Abelian integral of any polynomial form ω on the family of cycles implies that the form is algebraically relatively exact. We study here a simple example where Francoise's condition is not verified. We generalize Francoise's algorithm to this case and we show that Ml belongs to the C [ log t,t,1/t] module above the Abelian integrals. We also establish the linear differentia…

Abelian integralMathematics(all)Hamiltonian vector fieldMelnikov functionDifferential equationGeneral MathematicsAbelian integralLimit cycleAbelian integral; Melnikov function; Limit cycle; Fuchs systemHamiltonian systemFuchs systemVector fieldAbelian groupAlgorithmHamiltonian (control theory)Linear equationMathematicsBulletin des Sciences Mathématiques
researchProduct

Synthèse temps-minimale au voisinage d'une cible de codimension un: cas exceptionnel plat en dimension trois

1997

Resume Les trajectoires satisfaisant au systeme un x = X + uY et atteignant une cible N de codimension un en temps minimal peuvent arriver tangentiellement a N : c'est le cas exceptionnel. Nous prouvons qu'alors la synthese locale ne peut pas etre consideree comme une famille de syntheses planes et que de plus le systeme peut ne pas etre localement controlable. Nous illustrons ces proprietes sur un exemple de reacteurs chimiques.

General MedicineHumanitiesMathematicsComptes Rendus de l'Académie des Sciences - Series I - Mathematics
researchProduct

Singular systems in dimension 3: Cuspidal case and tangent elliptic flat case

2007

We study two singular systems in R3. The first one is affine in control and we achieve weighted blowings-up to prove that singular trajectories exist and that they are not locally time optimal. The second one is linear in control. The characteristic vector field in sub-Riemannian geometry is generically singular at isolated points in dimension 3. We define a case with symmetries, which we call flat, and we parametrize the sub-Riemannian sphere. This sphere is subanalytic.

Dimension (vector space)Homogeneous spaceMathematical analysisTangentTangent vectorAffine transformationExceptional divisorSingular controlEigenvalues and eigenvectorsMathematics
researchProduct

A note on a generalization of Françoise's algorithm for calculating higher order Melnikov functions

2004

In [J. Differential Equations 146 (2) (1998) 320–335], Françoise gives an algorithm for calculating the first nonvanishing Melnikov function M of a small polynomial perturbation of a Hamiltonian vector field and shows that M is given by an Abelian integral. This is done under the condition that vanishing of an Abelian integral of any polynomial form ω on the family of cycles implies that the form is algebraically relatively exact. We study here a simple example where Françoise’s condition is not verified. We generalize Françoise’s algorithm to this case and we show that M belongs to the C[log t, t, 1/t] module above the Abelian integrals. We also establish the linear differential system ver…

Abelian integralMathematics(all)GeneralizationGeneral MathematicsHomotopyMathematical analysisApplied mathematicsOrder (group theory)Abelian integral; Melnikov function; Limit cycle; Fuchs systemMelnikov methodMathematics
researchProduct

Hamiltonian monodromy from a Gauss-Manin monodromy

2009

International audience

[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph][PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph][ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph][ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph][PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph][MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]ComputingMilieux_MISCELLANEOUS
researchProduct