How much is enough? : The convergence of finite sample scattering properties to those of infinite media
We study the scattering properties of a cloud of particles. The particles are spherical, close to the incident wavelength in size, have a high albedo, and are randomly packed to 20% volume density. We show, using both numerically exact methods for solving the Maxwell equations and radiative-transfer-approximation methods, that the scattering properties of the cloud converge after about ten million particles in the system. After that, the backward-scattered properties of the system should estimate the properties of a macroscopic, practically infinite system. (C) 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.o…