6533b858fe1ef96bd12b6582
RESEARCH PRODUCT
How much is enough? : The convergence of finite sample scattering properties to those of infinite media
Timo VäisänenJukka RäbinäJukka RäbinäJohannes MarkkanenJohannes MarkkanenKarri MuinonenKarri MuinonenAntti PenttiläMaxim A. Yurkinsubject
010504 meteorology & atmospheric scienceseducationparticulate random mediapienhiukkasetoptiset ominaisuudet01 natural sciences114 Physical sciencesVolume densityScatteringsymbols.namesakelaskennallinen tiedeConvergence (routing)Radiative transferRadiative transferMaxwellin yhtälötsirontaSpectroscopy0105 earth and related environmental sciencesPhysicsRadiationScatteringscatteringAlbedoSample (graphics)Atomic and Molecular Physics and OpticsComputational physicsWavelengthMaxwell's equationsMaxwell equationsradiative transferParticulate random mediasymbolsapproksimointidescription
We study the scattering properties of a cloud of particles. The particles are spherical, close to the incident wavelength in size, have a high albedo, and are randomly packed to 20% volume density. We show, using both numerically exact methods for solving the Maxwell equations and radiative-transfer-approximation methods, that the scattering properties of the cloud converge after about ten million particles in the system. After that, the backward-scattered properties of the system should estimate the properties of a macroscopic, practically infinite system. (C) 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) Peer reviewed
year | journal | country | edition | language |
---|---|---|---|---|
2021-03-01 |