0000000001037419

AUTHOR

Kamil Khadiev

Quantum Online Algorithms with Respect to Space Complexity

Online algorithm is a well-known computational model. We introduce quantum online algorithms and investigate them with respect to a competitive ratio in two points of view: space complexity and advice complexity. We start with exploring a model with restricted memory and show that quantum online algorithms can be better than classical ones (deterministic or randomized) for sublogarithmic space (memory), and they can be better than deterministic online algorithms without restriction for memory. Additionally, we consider polylogarithmic space case and show that in this case, quantum online algorithms can be better than deterministic ones as well.

research product

Error-Free Affine, Unitary, and Probabilistic OBDDs

We introduce the affine OBDD model and show that zero-error affine OBDDs can be exponentially narrower than bounded-error unitary and probabilistic OBDDs on certain problems. Moreover, we show that Las-Vegas unitary and probabilistic OBDDs can be quadratically narrower than deterministic OBDDs. We also obtain the same results for the automata counterparts of these models.

research product

Error-Free Affine, Unitary, and Probabilistic OBDDs

We introduce the affine OBDD model and show that zero-error affine OBDDs can be exponentially narrower than bounded-error unitary and probabilistic OBDDs on certain problems. Moreover, we show that Las Vegas unitary and probabilistic OBDDs can be quadratically narrower than deterministic OBDDs. We also obtain the same results for the automata versions of these models.

research product

Quantum Algorithms for Some Strings Problems Based on Quantum String Comparator

We study algorithms for solving three problems on strings. These are sorting of n strings of length k, “the Most Frequent String Search Problem”, and “searching intersection of two sequences of strings”. We construct quantum algorithms that are faster than classical (randomized or deterministic) counterparts for each of these problems. The quantum algorithms are based on the quantum procedure for comparing two strings of length k in O(k) queries. The first problem is sorting n strings of length k. We show that classical complexity of the problem is Θ(nk) for constant size alphabet, but our quantum algorithm has O˜(nk) complexity. The second one is searching the most frequent string among n …

research product

Quantum Algorithm for Dynamic Programming Approach for DAGs. Applications for Zhegalkin Polynomial Evaluation and Some Problems on DAGs

In this paper, we present a quantum algorithm for dynamic programming approach for problems on directed acyclic graphs (DAGs). The running time of the algorithm is $O(\sqrt{\hat{n}m}\log \hat{n})$, and the running time of the best known deterministic algorithm is $O(n+m)$, where $n$ is the number of vertices, $\hat{n}$ is the number of vertices with at least one outgoing edge; $m$ is the number of edges. We show that we can solve problems that use OR, AND, NAND, MAX and MIN functions as the main transition steps. The approach is useful for a couple of problems. One of them is computing a Boolean formula that is represented by Zhegalkin polynomial, a Boolean circuit with shared input and non…

research product

Zero-Error Affine, Unitary, and Probabilistic OBDDs

We introduce the affine OBDD model and show that zero-error affine OBDDs can be exponentially narrower than bounded-error unitary and probabilistic OBDDs on certain problems. Moreover, we show that Las Vegas unitary and probabilistic OBDDs can be quadratically narrower than deterministic OBDDs. We also obtain the same results by considering the automata versions of these models.

research product

Very Narrow Quantum OBDDs and Width Hierarchies for Classical OBDDs

In the paper we investigate a model for computing of Boolean functions – Ordered Binary Decision Diagrams (OBDDs), which is a restricted version of Branching Programs. We present several results on the comparative complexity for several variants of OBDD models. We present some results on the comparative complexity of classical and quantum OBDDs. We consider a partial function depending on a parameter k such that for any k > 0 this function is computed by an exact quantum OBDD of width 2, but any classical OBDD (deterministic or stable bounded-error probabilistic) needs width 2 k + 1. We consider quantum and classical nondeterminism. We show that quantum nondeterminism can be more efficient …

research product

Quantum versus Classical Online Streaming Algorithms with Logarithmic Size of Memory

We consider online algorithms with respect to the competitive ratio. Here, we investigate quantum and classical one-way automata with non-constant size of memory (streaming algorithms) as a model for online algorithms. We construct problems that can be solved by quantum online streaming algorithms better than by classical ones in a case of logarithmic or sublogarithmic size of memory.

research product

Quantum-over-classical Advantage in Solving Multiplayer Games

We study the applicability of quantum algorithms in computational game theory and generalize some results related to Subtraction games, which are sometimes referred to as one-heap Nim games. In quantum game theory, a subset of Subtraction games became the first explicitly defined class of zero-sum combinatorial games with provable separation between quantum and classical complexity of solving them. For a narrower subset of Subtraction games, an exact quantum sublinear algorithm is known that surpasses all deterministic algorithms for finding solutions with probability $1$. Typically, both Nim and Subtraction games are defined for only two players. We extend some known results to games for t…

research product

On the Quantum and Classical Complexity of Solving Subtraction Games

We study algorithms for solving Subtraction games, which are sometimes referred as one-heap Nim games.

research product

Two-way quantum and classical machines with small memory for online minimization problems

We consider online algorithms. Typically the model is investigated with respect to competitive ratio. In this paper, we explore algorithms with small memory. We investigate two-way automata as a model for online algorithms with restricted memory. We focus on quantum and classical online algorithms. We show that there are problems that can be better solved by two-way automata with quantum and classical states than classical two-way automata in the case of sublogarithmic memory (sublinear size).

research product

Classical and Quantum Computations with Restricted Memory

Automata and branching programs are known models of computation with restricted memory. These models of computation were in focus of a large number of researchers during the last decades. Streaming algorithms are a modern model of computation with restricted memory. In this paper, we present recent results on the comparative computational power of quantum and classical models of branching programs and streaming algorithms.

research product

Quantum versus Classical Online Streaming Algorithms with Advice

We consider online algorithms with respect to the competitive ratio. Here, we investigate quantum and classical one-way automata with non-constant size of memory (streaming algorithms) as a model for online algorithms. We construct problems that can be solved by quantum online streaming algorithms better than by classical ones in a case of logarithmic or sublogarithmic size of memory, even if classical online algorithms get advice bits. Furthermore, we show that a quantum online algorithm with a constant number of qubits can be better than any deterministic online algorithm with a constant number of advice bits and unlimited computational power.

research product

Width Hierarchies for Quantum and Classical Ordered Binary Decision Diagrams with Repeated Test

We consider quantum, nondterministic and probabilistic versions of known computational model Ordered Read-$k$-times Branching Programs or Ordered Binary Decision Diagrams with repeated test ($k$-QOBDD, $k$-NOBDD and $k$-POBDD). We show width hierarchy for complexity classes of Boolean function computed by these models and discuss relation between different variants of $k$-OBDD.

research product

On the Complexity of Solving Subtraction Games

We study algorithms for solving Subtraction games, which sometimes are referred to as one-heap Nim games. We describe a quantum algorithm which is applicable to any game on DAG, and show that its query compexity for solving an arbitrary Subtraction game of $n$ stones is $O(n^{3/2}\log n)$. The best known deterministic algorithms for solving such games are based on the dynamic programming approach. We show that this approach is asymptotically optimal and that classical query complexity for solving a Subtraction game is generally $\Theta(n^2)$. This paper perhaps is the first explicit "quantum" contribution to algorithmic game theory.

research product

On the probability of finding marked connected components using quantum walks

Finding a marked vertex in a graph can be a complicated task when using quantum walks. Recent results show that for two or more adjacent marked vertices search by quantum walk with Grover's coin may have no speed-up over classical exhaustive search. In this paper, we analyze the probability of finding a marked vertex for a set of connected components of marked vertices. We prove two upper bounds on the probability of finding a marked vertex and sketch further research directions.

research product

Exact affine counter automata

We introduce an affine generalization of counter automata, and analyze their ability as well as affine finite automata. Our contributions are as follows. We show that there is a language that can be recognized by exact realtime affine counter automata but by neither 1-way deterministic pushdown automata nor realtime deterministic k-counter automata. We also show that a certain promise problem, which is conjectured not to be solved by two-way quantum finite automata in polynomial time, can be solved by Las Vegas affine finite automata. Lastly, we show that how a counter helps for affine finite automata by showing that the language MANYTWINS, which is conjectured not to be recognized by affin…

research product

Reordering Method and Hierarchies for Quantum and Classical Ordered Binary Decision Diagrams

We consider Quantum OBDD model. It is restricted version of read-once Quantum Branching Programs, with respect to “width” complexity. It is known that maximal complexity gap between deterministic and quantum model is exponential. But there are few examples of such functions. We present method (called “reordering”), which allows to build Boolean function g from Boolean Function f, such that if for f we have gap between quantum and deterministic OBDD complexity for natural order of variables, then we have almost the same gap for function g, but for any order. Using it we construct the total function REQ which deterministic OBDD complexity is \(2^{\varOmega (n/log n)}\) and present quantum OBD…

research product

Reordering Method and Hierarchies for Quantum and Classical Ordered Binary Decision Diagrams

We consider Quantum OBDD model. It is restricted version of read-once Quantum Branching Programs, with respect to "width" complexity. It is known that maximal complexity gap between deterministic and quantum model is exponential. But there are few examples of such functions. We present method (called "reordering"), which allows to build Boolean function $g$ from Boolean Function $f$, such that if for $f$ we have gap between quantum and deterministic OBDD complexity for natural order of variables, then we have almost the same gap for function $g$, but for any order. Using it we construct the total function $REQ$ which deterministic OBDD complexity is $2^{\Omega(n/\log n)}$ and present quantu…

research product

Lower Bounds and Hierarchies for Quantum Memoryless Communication Protocols and Quantum Ordered Binary Decision Diagrams with Repeated Test

We explore multi-round quantum memoryless communication protocols. These are restricted version of multi-round quantum communication protocols. The “memoryless” term means that players forget history from previous rounds, and their behavior is obtained only by input and message from the opposite player. The model is interesting because this allows us to get lower bounds for models like automata, Ordered Binary Decision Diagrams and streaming algorithms. At the same time, we can prove stronger results with this restriction. We present a lower bound for quantum memoryless protocols. Additionally, we show a lower bound for Disjointness function for this model. As an application of communicatio…

research product

Quantum-over-Classical Advantage in Solving Multiplayer Games

We study the applicability of quantum algorithms in computational game theory and generalize some results related to Subtraction games, which are sometimes referred to as one-heap Nim games.

research product

Lower Bounds and Hierarchies for Quantum Memoryless Communication Protocols and Quantum Ordered Binary Decision Diagrams with Repeated Test

We explore multi-round quantum memoryless communication protocols. These are restricted version of multi-round quantum communication protocols. The "memoryless" term means that players forget history from previous rounds, and their behavior is obtained only by input and message from the opposite player. The model is interesting because this allows us to get lower bounds for models like automata, Ordered Binary Decision Diagrams and streaming algorithms. At the same time, we can prove stronger results with this restriction. We present a lower bound for quantum memoryless protocols. Additionally, we show a lower bound for Disjointness function for this model. % As an application of communicat…

research product

Upperbounds on the probability of finding marked connected components using quantum walks

Quantum walk search may exhibit phenomena beyond the intuition from a conventional random walk theory. One of such examples is exceptional configuration phenomenon -- it appears that it may be much harder to find any of two or more marked vertices, that if only one of them is marked. In this paper, we analyze the probability of finding any of marked vertices in such scenarios and prove upper bounds for various sets of marked vertices. We apply the upper bounds to large collection of graphs and show that the quantum search may be slow even when taking real-world networks.

research product

Quantum Algorithm for Dyck Language with Multiple Types of Brackets

We consider the recognition problem of the Dyck Language generalized for multiple types of brackets. We provide an algorithm with quantum query complexity \(O(\sqrt{n}(\log n)^{0.5k})\), where n is the length of input and k is the maximal nesting depth of brackets. Additionally, we show the lower bound for this problem which is \(\varOmega (\sqrt{n}c^{k})\) for some constant c.

research product

Adjacent vertices can be hard to find by quantum walks

Quantum walks have been useful for designing quantum algorithms that outperform their classical versions for a variety of search problems. Most of the papers, however, consider a search space containing a single marked element. We show that if the search space contains more than one marked element, their placement may drastically affect the performance of the search. More specifically, we study search by quantum walks on general graphs and show a wide class of configurations of marked vertices, for which search by quantum walk needs Ω(N) steps, that is, it has no speed-up over the classical exhaustive search. The demonstrated configurations occur for certain placements of two or more adjace…

research product