0000000001038667
AUTHOR
Omar López-estrada
Cubic aromaticity in ligand-stabilized doped Au superatoms
The magnetic response of valence electrons in doped gold-based [M@Au8L8]q superatoms (M = Pd, Pt, Ag, Au, Cd, Hg, Ir, and Rh; L = PPh3; and q = 0, +1, +2) is studied by calculating the gauge including magnetically induced currents (GIMIC) in the framework of the auxiliary density functional theory. The studied systems include 24 different combinations of the dopant, total cluster charge, and cluster structure (cubic-like or oblate). The magnetically induced currents (both diatropic and paratropic) are shown to be sensitive to the atomic structure of clusters, the number of superatomic electrons, and the chemical nature of the dopant metal. Among the cubic-like structures, the strongest arom…
Solubility-Driven Isolation of a Metastable Nonagold Cluster with Body-Centered Cubic Structure.
The conventional synthetic methodology of atomically precise gold nanoclusters using reduction in solutions offers only thermodynamically most stable nanoclusters. We report herein a solubility‐driven isolation strategy to access the synthesis of a metastable gold cluster. The cluster, with the composition of [Au 9 (PPh 3 ) 8 ] + ( 1 ), displays an unusual, nearly perfect body‐centered‐cubic (bcc) structure. As revealed by ESI‐MS and UV/Vis measurement, the cluster is metastable in solution and converts to the well‐known [Au 11 (PPh 3 ) 8 Cl 2 ] + ( 2 ) within just 90 min. DFT calculations revealed that while both 1 and 2 are eight‐electron superatoms, there is a driving force to convert 1 …
Magnetically induced currents and aromaticity in ligand-stabilized Au and AuPt superatoms
Understanding magnetically induced currents (MICs) in aromatic or metallic nanostructures is crucial for interpreting local magnetic shielding and NMR data. Direct measurements of the induced currents have been successful only in a few planar molecules but their indirect effects are seen in NMR shifts of probe nuclei. Here, we have implemented a numerically efficient method to calculate gauge-including MICs in the formalism of auxiliary density functional theory. We analyze the currents in two experimentally synthesized gold-based, hydrogen-containing ligand-stabilized nanoclusters [HAu9(PPh3)8]2+ and [PtHAu8(PPh3)8]+. Both clusters have a similar octet configuration of Au(6s)-derived deloc…
1H NMR global diatropicity in copper hydride complexes
Understanding the magnetic response of electrons in nanoclusters is essential to interpret their NMR spectra thereby providing guidelines for their synthesis towards various target applications. Here, we consider two copper hydride clusters that have applications in hydrogen storage and release under standard temperature and pressure. Through Born–Oppenheimer molecular dynamics simulations, we study dynamics effects and their contributions to the NMR peaks. Finally, we examine the electrons’ magnetic response to an applied external magnetic field using the gauge-including magnetically induced currents theory. Local diatropic currents are generated in both clusters but an interesting global …
Copper-hydride nanoclusters with enhanced stability by N-heterocyclic carbenes
AbstractCopper-hydrides have been intensively studied for a long time due to their utilization in a variety of technologically important chemical transformations. Nevertheless, poor stability of the species severely hinders its isolation, storage and operation, which is worse for nano-sized ones. We report here an unprecedented strategy to access to ultrastable copper-hydride nanoclusters (NCs), namely, using bidentate N-heterocyclic carbenes as stabilizing ligands in addition to thiolates. In this work, a simple synthetic protocol was developed to synthesize the first large copper-hydride nanoclusters (NCs) stabilized by N-heterocyclic carbenes (NHCs). The NC, with the formula of Cu31(RS)2…
CCDC 2050535: Experimental Crystal Structure Determination
Related Article: Hui Shen, Lingzheng Wang, Omar López-Estrada, Chengyi Hu, Qingyuan Wu, Dongxu Cao, Sami Malola, Boon K. Teo, Hannu Häkkinen, Nanfeng Zheng|2021|Nano Res.|14|3303|doi:10.1007/s12274-021-3389-9