0000000001040499

AUTHOR

Hannelore Daniel

Differential cystine and dibasic amino acid handling after loss of function of the amino acid transporter b0,+ AT (Slc7a9) in mice

Cystinuria is an autosomal recessive disease caused by mutations in SLC3A1 ( rBAT) and SLC7A9 ( b 0,+ AT). Gene targeting of the catalytic subunit ( Slc7a9) in mice leads to excessive excretion of cystine, lysine, arginine, and ornithine. Here, we studied this non-type I cystinuria mouse model using gene expression analysis, Western blotting, clearance, and brush-border membrane vesicle (BBMV) uptake experiments to further characterize the renal and intestinal consequences of losing Slc7a9 function. The electrogenic and BBMV flux studies in the intestine suggested that arginine and ornithine are transported via other routes apart from system b0,+. No remarkable gene expression changes were…

research product

The case for strategic international alliances to harness nutritional genomics for public and personal health

Nutrigenomics is the study of how constituents of the diet interact with genes, and their products, to alter phenotype and, conversely, how genes and their products metabolise these constituents into nutrients, antinutrients, and bioactive compounds. Results from molecular and genetic epidemiological studies indicate that dietary unbalance can alter gene-nutrient interactions in ways that increase the risk of developing chronic disease. The interplay of human genetic variation and environmental factors will make identifying causative genes and nutrients a formidable, but not intractable, challenge. We provide specific recommendations for how to best meet this challenge and discuss the need …

research product