0000000001048888
AUTHOR
Alexandr Kozlinskiy
The MuPix System-on-Chip for the Mu3e Experiment
Nuclear instruments & methods in physics research / A 845, 194 - 198 (2016). doi:10.1016/j.nima.2016.06.095
The Mu3e Data Acquisition
The Mu3e experiment aims to find or exclude the lepton flavour violating decay $\mu^+\to e^+e^-e^+$ with a sensitivity of one in 10$^{16}$ muon decays. The first phase of the experiment is currently under construction at the Paul Scherrer Institute (PSI, Switzerland), where beams with up to 10$^8$ muons per second are available. The detector will consist of an ultra-thin pixel tracker made from High-Voltage Monolithic Active Pixel Sensors (HV-MAPS), complemented by scintillating tiles and fibres for precise timing measurements. The experiment produces about 100 Gbit/s of zero-suppressed data which are transported to a filter farm using a network of FPGAs and fast optical links. On the filte…
Track reconstruction for theMu3eexperiment based on a novel Multiple Scattering fit
The Mu3e experiment is designed to search for the lepton flavor violating decay μ + → e + e + e − . The aim of the experiment is to reach a branching ratio sensitivity of 10−16 . In a first phase the experiment will be performed at an existing beam line at the Paul-Scherrer Institute (Switzerland) providing 108 muons per second, which will allow to reach a sensitivity of 2 · 10−15 . The muons with a momentum of about 28 MeV/c are stopped and decay at rest on a target. The decay products (positrons and electrons) with energies below 53MeV are measured by a tracking detector consisting of two double layers of 50 μm thin silicon pixel sensors. The high granularity of the pixel detector with a …
Efficiency and timing performance of the MuPix7 high-voltage monolithic active pixel sensor
The MuPix7 is a prototype high voltage monolithic active pixel sensor with 103 times 80 um2 pixels thinned to 64 um and incorporating the complete read-out circuitry including a 1.25 Gbit/s differential data link. Using data taken at the DESY electron test beam, we demonstrate an efficiency of 99.3% and a time resolution of 14 ns. The efficiency and time resolution are studied with sub-pixel resolution and reproduced in simulations.
Observation of the rare B(s)(0) + decay from the combined analysis of CMS and LHCb data.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported licence.-- et al.
Performance of the large scale HV-CMOS pixel sensor MuPix8
The Mu3e experiment is searching for the charged lepton flavour violating decay $ ��^+\rightarrow e^+ e^- e^+ $, aiming for an ultimate sensitivity of one in $10^{16}$ decays. In an environment of up to $10^9$ muon decays per second the detector needs to provide precise vertex, time and momentum information to suppress accidental and physics background. The detector consists of cylindrical layers of $50\, ��\text{m}$ thin High Voltage Monolithic Active Pixel Sensors (HV-MAPS) placed in a $1\,\text{T}$ magnetic field. The measurement of the trajectories of the decay particles allows for a precise vertex and momentum reconstruction. Additional layers of fast scintillating fibre and tile detec…
MuPix7 - A fast monolithic HV-CMOS pixel chip for Mu3e
The MuPix7 chip is a monolithic HV-CMOS pixel chip, thinned down to 50 \mu m. It provides continuous self-triggered, non-shuttered readout at rates up to 30 Mhits/chip of 3x3 mm^2 active area and a pixel size of 103x80 \mu m^2. The hit efficiency depends on the chosen working point. Settings with a power consumption of 300 mW/cm^2 allow for a hit efficiency >99.5%. A time resolution of 14.2 ns (Gaussian sigma) is achieved. Latest results from 2016 test beam campaigns are shown.