6533b863fe1ef96bd12c78cb

RESEARCH PRODUCT

Performance of the large scale HV-CMOS pixel sensor MuPix8

Frederik WautersIurii SorokinF. StielerJ. HammerichM. ZimmermannH. ZhangSebastian DittmeierF. EhrlerA. Meneses GonzalesMarius KöppelC. GrzesikJ. KrögerL. NoehteIvan PericM. MüllerA. TyukinH. AugustinRudolf SchimassekC. BlattgersteAndré SchöningT. WagnerT. RudzkiD. ImmigL. HuthMridula PrathapanF. MeierA. HerkertAlexandr KozlinskiyD. WiednerNiklaus BergerA. Weber

subject

PhysicsMuonPhysics - Instrumentation and Detectors010308 nuclear & particles physicsbusiness.industryPhysics::Instrumentation and DetectorsDetectorFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)01 natural sciencesParticle detector030218 nuclear medicine & medical imagingSemiconductor detectorMomentum03 medical and health sciencesParticle decay0302 clinical medicineOpticsCMOS0103 physical sciencesHigh Energy Physics::ExperimentbusinessInstrumentationMathematical PhysicsLepton

description

The Mu3e experiment is searching for the charged lepton flavour violating decay $ ��^+\rightarrow e^+ e^- e^+ $, aiming for an ultimate sensitivity of one in $10^{16}$ decays. In an environment of up to $10^9$ muon decays per second the detector needs to provide precise vertex, time and momentum information to suppress accidental and physics background. The detector consists of cylindrical layers of $50\, ��\text{m}$ thin High Voltage Monolithic Active Pixel Sensors (HV-MAPS) placed in a $1\,\text{T}$ magnetic field. The measurement of the trajectories of the decay particles allows for a precise vertex and momentum reconstruction. Additional layers of fast scintillating fibre and tile detectors provide sub-nanosecond time resolution. The MuPix8 chip is the first large scale prototype, proving the scalability of the HV-MAPS technology. It is produced in the AMS aH18 $180\, \text{nm}$ HV-CMOS process. It consists of three sub-matrices, each providing an untriggered datastream of more than $10\,\text{MHits}/\text{s}$. The latest results from laboratory and testbeam characterisation are presented, showing an excellent performance with efficiencies $>99.6\,\text{\%}$ and a time resolution better than $10\, \text{ns}$ achieved with time walk correction.

https://dx.doi.org/10.48550/arxiv.1905.09309