0000000001070924

AUTHOR

Iurii Sorokin

showing 3 related works from this author

Parameterization-based tracking for the P2 experiment

2017

The P2 experiment in Mainz aims to determine the weak mixing angle θW at low momentum transfer by measuring the parity-violating asymmetry of elastic electronproton scattering. In order to achieve the intended precision of Δ(sin2 θW )/sin2 θW = 0:13% within the planned 10 000 hours of running the experiment has to operate at the rate of 1011 detected electrons per second. Although it is not required to measure the kinematic parameters of each individual electron, every attempt is made to achieve the highest possible throughput in the track reconstruction chain.In the present work a parameterization-based track reconstruction method is described. It is a variation of track following, where t…

Physics010308 nuclear & particles physicsPhysicsQC1-999DetectorWeinberg angleTracking (particle physics)01 natural sciencesOrders of magnitude (time)Phase space0103 physical sciences010306 general physicsAlgorithmSimulationSIMPLE algorithmAnalytic functionParametric statisticsEPJ Web of Conferences
researchProduct

Performance of the large scale HV-CMOS pixel sensor MuPix8

2019

The Mu3e experiment is searching for the charged lepton flavour violating decay $ ��^+\rightarrow e^+ e^- e^+ $, aiming for an ultimate sensitivity of one in $10^{16}$ decays. In an environment of up to $10^9$ muon decays per second the detector needs to provide precise vertex, time and momentum information to suppress accidental and physics background. The detector consists of cylindrical layers of $50\, ��\text{m}$ thin High Voltage Monolithic Active Pixel Sensors (HV-MAPS) placed in a $1\,\text{T}$ magnetic field. The measurement of the trajectories of the decay particles allows for a precise vertex and momentum reconstruction. Additional layers of fast scintillating fibre and tile detec…

PhysicsMuonPhysics - Instrumentation and Detectors010308 nuclear & particles physicsbusiness.industryPhysics::Instrumentation and DetectorsDetectorFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)01 natural sciencesParticle detector030218 nuclear medicine & medical imagingSemiconductor detectorMomentum03 medical and health sciencesParticle decay0302 clinical medicineOpticsCMOS0103 physical sciencesHigh Energy Physics::ExperimentbusinessInstrumentationMathematical PhysicsLepton
researchProduct

MuPix8 — Large area monolithic HVCMOS pixel detector for the Mu3e experiment

2019

Abstract The requirements of the ultra thin pixel detectors for the Mu3e experiment at PSI can be achieved by the HVCMOS technology, which allows the design of fast monolithic detectors. The latest nearly full size prototype, MuPix8, has a size of about 1 × 2 cm 2 . The pixel readout circuitry was fully redesigned in comparison to the previous MuPix versions. MuPix8’s readout electronics implement a new concept with two comparators and two different operation modes. One mode uses two threshold voltages for time walk correction, the other is a ramp-ADC. First tests show a detection efficiency of 99.6% for 4 GeV electrons.

PhysicsNuclear and High Energy PhysicsPixelComparatorPhysics::Instrumentation and Detectorsbusiness.industryDetectorReadout electronicsElectronOpticsbusinessInstrumentationVoltagePixel detectorNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct