0000000001050251

AUTHOR

Rosario Iaria

showing 13 related works from this author

Spectral evolution of Scorpius X-1 along its Color-Color Diagram

2006

researchProduct

BeppoSAX discovery of a new X-ray pulsar

2004

researchProduct

Timing techniques applied to distributed modular high-energy astronomy: the H.E.R.M.E.S. project

2021

The HERMES-TP/SP (High Energy Rapid Modular Ensemble of Satellites -- Technologic and Scientific Pathfinder) is an in-orbit demonstration of the so-called distributed astronomy concept. Conceived as a mini-constellation of six 3U nano-satellites hosting a new miniaturized detector, HERMES-TP/SP aims at the detection and accurate localisation of bright high-energy transients such as Gamma-Ray Bursts. The large energy band, the excellent temporal resolution and the wide field of view that characterize the detectors of the constellation represent the key features for the next generation high-energy all-sky monitor with good localisation capabilities that will play a pivotal role in the future …

CubeSatsHigh energyHigh-energy astronomyReal-time computingFOS: Physical sciences01 natural sciences7. Clean energy010309 opticsX-rays0103 physical sciencesNano-satellitesTemporal triangulationInstrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsConstellationHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsbusiness.industryDetectorAstrophysics::Instrumentation and Methods for AstrophysicsModular designPathfinderTemporal resolutionGamma Ray BurstsTransient (oscillation)Astrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsbusinessSpace Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray
researchProduct

Quantum correlations beyond entanglement in a classical-channel model of gravity

2022

A direct quantization of the Newtonian interaction between two masses is known to establish entanglement, which if detected would witness the quantum nature of the gravitational field. Gravitational interaction is yet compatible also with gravitational decoherence models relying on classical channels, hence unable to create entanglement. Here, we show in paradigmatic cases that, despite the absence of entanglement, a classical-channel model of gravity can still establish quantum correlations in the form of quantum discord between two masses. This is demonstrated for the Kafri-Taylor-Milburn (KTM) model and a recently proposed dissipative extension of this. In both cases, starting from an un…

Quantum PhysicsMultidisciplinaryQuantum gravity open quantum systems quantum correlationsFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Quantum PhysicsQuantum Physics (quant-ph)Settore FIS/03 - Fisica Della MateriaGeneral Relativity and Quantum Cosmology
researchProduct

Spectral Analysis of LMC-X2 with XMM/Newton

2008

We present the results of the analisys of an archival observation of LMC X-2 performed with XMM/Newton. The spectra of this source has never been analyzed with a high precision instrument before. The spectrum of the source can be fitted with a blackbody with a temperature 1.5 keV plus a disk blackbody at 0.8 keV. We argue that the emission of this source can be straightforwardly interpreted as a sum of the emission from a boundary layer between the NS and the disc and a blackbody component coming from the disc itself. The detection of the O VIII emission line (and the lack of detection of lines in the iron region) can be due to the fact that the source lies in the Large Magellanic Cloud.

Settore FIS/05 - Astronomia E AstrofisicaX-rays: spectral analysis
researchProduct

Accretion in strong field gravity with eXTP

2019

In this paper we describe the potential of the enhanced X-ray Timing and Polarimetry (eXTP) mission for studies related to accretion flows in the strong field gravity regime around both stellar-mass and supermassive black-holes. eXTP has the unique capability of using advanced 'spectral-timing-polarimetry' techniques to analyze the rapid variations with three orthogonal diagnostics of the flow and its geometry, yielding unprecedented insight into the inner accreting regions, the effects of strong field gravity on the material within them and the powerful outflows which are driven by the accretion process.

ACTIVE GALACTIC NUCLEIAccretionaccretion; black holes physics; X-ray; Physics and Astronomy (all)black holes physicAstronomyAstrophysics::High Energy Astrophysical PhenomenaBlack holes physicsPolarimetryFOS: Physical sciencesBLACK-HOLE SPINGeneral Physics and AstronomyStrong fieldAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesX-rayPhysics and Astronomy (all)ELECTROMAGNETIC EMISSIONSettore FIS/05 - Astronomia e Astrofisicablack holes physicsaccretion0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010306 general physics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)XMM-NEWTONPhysicsLENS-THIRRING PRECESSION[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]QUASI-PERIODIC OSCILLATIONS[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]IRON KAccretion (astrophysics)X ray[SDU]Sciences of the Universe [physics]ULTRA-FAST OUTFLOWSAstrophysics::Earth and Planetary AstrophysicsSPECTRAL FEATURESAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]X-RAY BINARIESScience China Physics, Mechanics & Astronomy
researchProduct

The pulse profile and spin evolution of the accreting pulsar in Terzan 5, IGR J17480-2446, during its 2010 outburst

2012

(abridged) We analyse the spectral and pulse properties of the 11 Hz transient accreting pulsar, IGR J17480-2446, in the globular cluster Terzan 5, considering all the available RXTE, Swift and INTEGRAL observations performed between October and November, 2010. By measuring the pulse phase evolution we conclude that the NS spun up at an average rate of =1.48(2)E-12 Hz/s, compatible with the accretion of the Keplerian angular momentum of matter at the inner disc boundary. Similar to other accreting pulsars, the stability of the pulse phases determined by using the second harmonic component is higher than that of the phases based on the fundamental frequency. Under the assumption that the sec…

High Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/05 - Astronomia E AstrofisicaAstrophysics::High Energy Astrophysical Phenomenaneutron pulsars: individual: IGR J17480-2446 X-rays: binaries [accretion accretion discs stars]FOS: Physical sciencesAstrophysics::Solar and Stellar Astrophysicsaccretion accretion discs stars: neutron pulsars: individual: IGR J17480-2446 X-rays: binariesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy Astrophysics
researchProduct

The X-ray spectrum of the newly discovered accreting millisecond pulsar IGR J17511-3057

2010

We report on an XMM-Newton observation of the accreting millisecond pulsar, IGR J17511-3057. Pulsations at 244.8339512(1) Hz are observed with an RMS pulsed fraction of 14.4(3)%. A precise solution for the P_orb=12487.51(2)s binary system is derived. The measured mass function indicates a main sequence companion with a mass between 0.15 and 0.44 Msun. The XMM-Newton spectrum of the source can be modelled by at least three components, multicoloured disc emission, thermal emission from the NS surface and thermal Comptonization emission. Spectral fit of the XMM-Newton data and of the RXTE data, taken in a simultaneous temporal window, constrain the Comptonization parameters: the electron tempe…

High Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/05 - Astronomia E Astrofisicastars neutron X-rays binaries X-rays individual IGR J17511-3057Astrophysics::High Energy Astrophysical PhenomenaAstrophysics::Solar and Stellar AstrophysicsFOS: Physical sciencesAstrophysics::Earth and Planetary AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy Astrophysics
researchProduct

A Spectral Insight into the Physics of Accreting ms Pulsars

2010

The broadened iron lines observed from accreting compact objects are most easily interpreted in terms of reflection onto the accretion disc of the hard X-ray photons emitted by the central source. In this context, such a broadness is due to the relativistic motion of the reflecting plasma, in the deep gravitational well of the compact object, and can thus serve as a probe of the inner radius of the disc. Here we report about the discovery of such features from a couple of accreting millisecond pulsars, and discuss the constraints which can be derived on the magnetospheric radius.

X-rays: binariesSettore FIS/05 - Astronomia E Astrofisicaline: profileprofiles; X-rays: binaries [accretion accretion disks; line]accretion accretion disk
researchProduct

To accrete or not to accrete: the dilemma of the recycling scenario

2004

We study the evolution of a low-mass X-ray binary by coupling a binary stellar evolution code with a general relativistic code that describes the behaviour of the neutron star. We find that non-conservative mass transfer scenarios are required to prevent the formation of submillisecond pulsars and/or the collapse to a black hole. We discuss the sweeping effects of an active magneto-dipole rotator on the transferred matter as a promising mechanism to obtain highly non-conservative evolutions.

Astrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)FOS: Physical sciencesAstrophysics
researchProduct

Observatory science with eXTP

2019

Disponible preprint en: arXiv:1812.04023v1 [astro-ph.HE] [v1] Mon, 10 Dec 2018 19:00:52 UTC (4,376 KB)

cataclysmic binariesAstronomyFIELD CAMERAS OBSERVATIONSspace research instruments nuclear astrophysics flare stars accretion and accretion disks mass loss and stellar winds cataclysmic binaries X-ray binaries supernova remnants active galactic nuclei X-ray bursts gamma-ray bursts gravitational wavesGeneral Physics and Astronomygamma-ray burstspace research instrument01 natural sciencesGamma ray burstsObservatoryAccretion and accretion disksAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsgravitational waveaccretion and accretion diskPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)supernova remnants[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph][SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]flare starsgamma-ray burstsAstrophysics::Instrumentation and Methods for Astrophysicsaccretion and accretion disks; active galactic nuclei; cataclysmic binaries; flare stars; gamma-ray bursts; gravitational waves; mass loss and stellar winds; nuclear astrophysics; space research instruments; supernova remnants; X-ray binaries; X-ray bursts; Physics and Astronomy (all)Space research instrumentsX ray burstSupernovaX-ray binariesgravitational wavesaccretion and accretion disksQUIETHigh massX-ray binarieMass loss and stellar windsNuclear astrophysicsGamma-ray burstsspace research instrumentsAstrophysics - High Energy Astrophysical PhenomenaPULSAR-WIND NEBULAEFAST RADIO-BURSTSAstrofísica nuclearActive galactic nucleusTIDAL DISRUPTIONSupernova remnantsAstrophysics::High Energy Astrophysical Phenomenanuclear astrophysicsPolarimetryFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsACCRETING NEUTRON-STARSaccretion and accretion disks; active galactic nuclei; cataclysmic binaries; flare stars; gamma-ray bursts; gravitational waves; mass loss and stellar winds; nuclear astrophysics; space research instruments; supernova remnants; X-ray binaries; X-ray burstsGravitational wavesPhysics and Astronomy (all)cataclysmic binarieSettore FIS/05 - Astronomia e AstrofisicaSUPERMASSIVE BLACK-HOLES0103 physical sciences010306 general physicsX-ray burstAstrophysics::Galaxy AstrophysicsCataclysmic binariesActive galactic nucleiflare starAstronomyWhite dwarfFlare starsStarssupernova remnantQB460-466 Astrophysics[SDU]Sciences of the Universe [physics]mass loss and stellar wind:Física::Astronomia i astrofísica [Àrees temàtiques de la UPC]active galactic nucleiX-RAYX-ray burstsSupernova remmantsmass loss and stellar windsX ray binaries[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]SEYFERT 1 GALAXYnuclear astrophysic
researchProduct

"The discovery of serendipitous X-ray pulsar SAX J1802.7-2017 from a BeppoSAX observation of GX 9+1"

2004

researchProduct

Constraining the Equation of State of Neutron Stars with Genral Relativity

2005

When a radio pulsar breakes down by virtue of magnetodipole emission, its gravitational mass decreases accordingly. If the pulsar in hosted in a binary system, this mass loss will increase the orbital period of the system. We show that this relativistic effect can be indeed observable if the NS is fast and magnetized enough and that, if observed, it will help to put tight constraints on the equation of state of ultradense matter.

Neutron stars Relativity and gravitation Thermodynamic processes conduction convection equations of state
researchProduct