0000000001055442

AUTHOR

Jarkko Siltakoski

showing 7 related works from this author

Recovering a variable exponent

2021

We consider an inverse problem of recovering the non-linearity in the one dimensional variable exponent $p(x)$-Laplace equation from the Dirichlet-to-Neumann map. The variable exponent can be recovered up to the natural obstruction of rearrangements. The main technique is using the properties of a moment problem after reducing the inverse problem to determining a function from its $L^p$-norms.

non-standard growthvariable exponentelliptic equationGeneral Mathematicsquasilinear equationinversio-ongelmatCalderón's problemMathematics - Analysis of PDEsapproximation by polynomialsFOS: Mathematics34A55 (Primary) 41A10 34B15 28A25 (Secondary)inverse problemapproksimointiMüntz-Szász theoremdifferentiaaliyhtälötAnalysis of PDEs (math.AP)Documenta Mathematica
researchProduct

An evolutionary Haar-Rado type theorem

2021

AbstractIn this paper, we study variational solutions to parabolic equations of the type $$\partial _t u - \mathrm {div}_x (D_\xi f(Du)) + D_ug(x,u) = 0$$ ∂ t u - div x ( D ξ f ( D u ) ) + D u g ( x , u ) = 0 , where u attains time-independent boundary values $$u_0$$ u 0 on the parabolic boundary and f, g fulfill convexity assumptions. We establish a Haar-Rado type theorem: If the boundary values $$u_0$$ u 0 admit a modulus of continuity $$\omega $$ ω and the estimate $$|u(x,t)-u_0(\gamma )| \le \omega (|x-\gamma |)$$ | u ( x , t ) - u 0 ( γ ) | ≤ ω ( | x - γ | ) holds, then u admits the same modulus of continuity in the spatial variable.

osittaisdifferentiaaliyhtälötGeneral Mathematics010102 general mathematicsBoundary (topology)variaatiolaskentaAlgebraic geometryType (model theory)01 natural sciencesParabolic partial differential equationOmegaModulus of continuityConvexity010101 applied mathematicsCombinatoricsNumber theory0101 mathematicsMathematics
researchProduct

Elliptic Harnack's inequality for a singular nonlinear parabolic equation in non‐divergence form

2022

We prove an elliptic Harnack's inequality for a general form of a parabolic equation that generalizes both the standard parabolic -Laplace equation and the normalized version that has been proposed in stochastic game theory. This version of the inequality does not require the intrinsic waiting time and we get the estimate with the same time level on both sides of the inequality. peerReviewed

matematiikkaGeneral Mathematicsyhtälötepäyhtälöt
researchProduct

Hölder gradient regularity for the inhomogeneous normalized p(x)-Laplace equation

2022

We prove the local gradient Hölder regularity of viscosity solutions to the inhomogeneous normalized p(x)-Laplace equation −Δp(x)Nu=f(x), where p is Lipschitz continuous, inf⁡p>1, and f is continuous and bounded. peerReviewed

viscosity solutionosittaisdifferentiaaliyhtälötnon-divergence form equationHölder gradient regularityinhomogeneous equationApplied Mathematicsnormalized equationp-LaplaceAnalysisJournal of Mathematical Analysis and Applications
researchProduct

Equivalence of viscosity and weak solutions for a $p$-parabolic equation

2019

AbstractWe study the relationship of viscosity and weak solutions to the equation $$\begin{aligned} \smash {\partial _{t}u-\varDelta _{p}u=f(Du)}, \end{aligned}$$ ∂ t u - Δ p u = f ( D u ) , where $$p>1$$ p > 1 and $$f\in C({\mathbb {R}}^{N})$$ f ∈ C ( R N ) satisfies suitable assumptions. Our main result is that bounded viscosity supersolutions coincide with bounded lower semicontinuous weak supersolutions. Moreover, we prove the lower semicontinuity of weak supersolutions when $$p\ge 2$$ p ≥ 2 .

viscosity solutionosittaisdifferentiaaliyhtälötPure mathematics35K92 35J60 35D40 35D30 35B51Mathematics::Analysis of PDEscomparison principleweak solutionparabolic p-LaplacianViscosityMathematics (miscellaneous)Mathematics - Analysis of PDEsBounded functionFOS: Mathematicsgradient termEquivalence (measure theory)MathematicsAnalysis of PDEs (math.AP)
researchProduct

Equivalence of viscosity and weak solutions for the normalized $p(x)$-Laplacian

2018

We show that viscosity solutions to the normalized $p(x)$-Laplace equation coincide with distributional weak solutions to the strong $p(x)$-Laplace equation when $p$ is Lipschitz and $\inf p>1$. This yields $C^{1,\alpha}$ regularity for the viscosity solutions of the normalized $p(x)$-Laplace equation. As an additional application, we prove a Rad\'o-type removability theorem.

osittaisdifferentiaaliyhtälöt35J60 35D40 35D30Pure mathematicsApplied Mathematics010102 general mathematicsLipschitz continuity01 natural sciences010101 applied mathematicsViscosityMathematics - Analysis of PDEspartial differential equationsFOS: Mathematics0101 mathematicsLaplace operatorEquivalence (measure theory)AnalysisMathematicsAnalysis of PDEs (math.AP)
researchProduct

p-Laplacen operaattorin ominaisarvo-ongelmasta

2016

Tämän tutkielman tarkoitus on tutustua epälineaarisiin ominaisarvo-ongelmiin p-Laplacen operaattorin ominaisarvo-ongelman kautta. p-Laplacen operaattori on Laplacen operaattorin eräs yleistys ja tarkastelun kohteena oleva ominaisarvo-ongelma on Dirichletin ominaisarvo-ongelman yleistys. Tutkielmassa kerrataan ensin tarvittavia taustatietoja Sobolevin avaruuksista ja funktionaalianalyysistä, ja keskitytään sitten itse ongelmaan. Päätulokset koskevat ensimmäistä ominaisarvoa, ja ne ovat ensimmäisen ominaisarvon olemassaolo, ensimmäisen ominaisarvon karakterisointi Rayleighin osamäärän avulla, ensimmäisen ominaisfunktion yksinkertaisuus, ja se, että ensimmäinen ominaisfunktio on ainoa ominaisf…

osittaisdifferentiaaliyhtälötominaisarvotLaplaceominaisarvoharmoninenSobolevin avaruus
researchProduct