0000000001075074
AUTHOR
C. R. Nobs
Three beta-decaying states in 128In and 130In resolved for the first time using Penning-trap techniques
Isomeric states in 128In and 130In have been studied with the JYFLTRAP Penning trap at the IGISOL facility. By employing state-of-the-art ion manipulation techniques, three different beta-decaying states in 128In and 130In have been separated and their masses measured. JYFLTRAP was also used to select the ions of interest for identification at a post-trap decay spectroscopy station. A new beta-decaying high-spin isomer feeding the isomer in 128Sn has been discovered in 128In at 1797.6(20) keV. Shell-model calculations employing a CD-Bonn potential re-normalized with the perturbative G-matrix approach suggest this new isomer to be a 16⁺ spin-trap isomer. In 130In, the lowest-lying (10⁻) isom…
First determination of β-delayed multiple neutron emission beyond A = 100 through direct neutron measurement : The P2n value of 136Sb
Background: β-delayed multiple neutron emission has been observed for some nuclei with A≤100, being the Rb100 the heaviest β2n emitter measured to date. So far, only 25P2n values have been determined for the ≈300 nuclei that may decay in this way. Accordingly, it is of interest to measure P2n values for the other possible multiple neutron emitters throughout the chart of the nuclides. It is of particular interest to make such a measurement for nuclei with A>100 to test the predictions of theoretical models and simulation tools for the decays of heavy nuclei in the region of very neutron-rich nuclei. In addition, the decay properties of these nuclei are fundamental for the understanding of a…
Penning-trap-assisted study of excitations in Br88 populated in β decay of Se88
Excited levels of $^{88}\mathrm{Br}$ populated in the $\ensuremath{\beta}$ decay of $^{88}\mathrm{Se}$ have been studied by means of $\ensuremath{\beta}\ensuremath{\gamma}$ and $\ensuremath{\gamma}\ensuremath{\gamma}$ spectroscopy methods. Neutron-rich parent $^{88}\mathrm{Se}$ nuclei were produced with proton-induced fission of $^{238}\mathrm{U}$ using the Ion Guide Isotope Separator On-Line (IGISOL) method and separated from contaminants using a dipole magnet and the coupled JYFLTRAP Penning trap at the Accelerator Laboratory of the University of Jyv\"askyl\"a. The level scheme of $^{88}\mathrm{Br}$ has been constructed and $logft$ values of levels were determined. The ground-state spin o…
A time-of-flight correction procedure for fast-timing data of recoils with varying implantation positions at a spectrometer focal plane
Abstract Fast-timing measurements at the focal plane of a separator can suffer from poor timing resolution. This is due to the variations in time-of-flight (ToF) for photons travelling to a given detector, which arise from the changes in the implantation positions of the recoil nuclei emitting the γ rays of interest. In order to minimise these effects on timing measurements, a procedure is presented that improves fast-timing data by performing ToF corrections on an event-by-event basis. This method was used to correct data collected with an array of eight LaBr 3 detectors, which detected γ rays from spatially distributed 138Gd recoil-implants at the focal plane of the Recoil-Ion-Transport-U…
Measurement of the heaviest Beta-delayed 2-neutron emitter: 136Sb
The Beta-delayed neutron emission probability, Pn , of very exotic nuclei is crucial for the understanding of nuclear structure properties of many isotopes and astrophysical processes such as the rapid neutron capture process (r-process). In addition Beta-delayed neutrons are important in a nuclear power reactor operated in a prompt sub-critical, delayed critical condition, as they contribute to the decay heat inducing fission reactions after a shut down. The study of neutron-rich isotopes and the measurement of Beta-delayed one-neutron emitters (Beta1n) is possible thanks to the Rare Isotope Beam (RIB) facilities, where radioactive beams allow the production of exotic nuclei of interest, w…
Novel Penning-trap techniques reveal isomeric states in $^{128}$In and $^{130}$In for the first time
Isomeric states in $^{128}$In and $^{130}$In have been studied with the JYFLTRAP Penning trap at the IGISOL facility. By employing novel ion manipulation techniques, different states were separated and masses of six beta-decaying states were measured. JYFLTRAP was also used to select the ions of interest for identification at a post-trap decay spectroscopy station. A new beta-decaying high-spin isomer feeding the $15^-$ isomer in $^{128}$Sn has been discovered in $^{128}$In at $1797.6(20)$ keV. Shell-model calculations employing a CD-Bonn potential re-normalized with the perturbative G-matrix approach suggest this new isomer to be a $16^+$ spin-trap isomer. In $^{130}$In, the lowest-lying $…