0000000001083015

AUTHOR

Francisco Gutiérrez-santiago

0000-0002-4564-9271

showing 2 related works from this author

Prefoldin-like Bud27 influences the transcription of ribosomal components and ribosome biogenesis in Saccharomyces cerevisiae

2020

Understanding the functional connection that occurs for the three nuclear RNA polymerases to synthesize ribosome components during the ribosome biogenesis process has been the focal point of extensive research. To preserve correct homeostasis on the production of ribosomal components, cells might require the existence of proteins that target a common subunit of these RNA polymerases to impact their respective activities. This work describes how the yeast prefoldin-like Bud27 protein, which physically interacts with the Rpb5 common subunit of the three RNA polymerases, is able to modulate the transcription mediated by the RNA polymerase I, likely by influencing transcription elongation, the …

0303 health sciences030302 biochemistry & molecular biologyRNA polymerasesRNARibosome biogenesisPrefoldin-likeRNA polymerase IISaccharomyces cerevisiaeBiologyRibosomal RNARibosomeCell biology03 medical and health scienceschemistry.chemical_compoundchemistryTranscription (biology)RNA polymeraseRibosome biogenesisRNA polymerase Ibiology.proteinMolecular BiologyTranscription030304 developmental biology
researchProduct

Rpb4 and Puf3 imprint and post-transcriptionally control the stability of a common set of mRNAs in yeast

2020

ABSTRACTGene expression involving RNA polymerase II is regulated by the concerted interplay between mRNA synthesis and degradation, crosstalk in which mRNA decay machinery and transcription machinery respectively impact transcription and mRNA stability. Rpb4, and likely dimer Rpb4/7, seem the central components of the RNA pol II governing these processes. In this work we unravel the molecular mechanisms participated by Rpb4 that mediate the posttranscriptional events regulating mRNA imprinting and stability. By RIP-Seq, we analyzed genome-wide the association of Rpb4 with mRNAs and demonstrated that it targeted a large population of more than 1400 transcripts. A group of these mRNAs was als…

Saccharomyces cerevisiae ProteinsTranscription GeneticRNA StabilityRNA polymerase IIRNA-binding proteinSaccharomyces cerevisiaeGenomic Imprinting03 medical and health sciences0302 clinical medicineTranscription (biology)Gene Expression Regulation FungalGene expressionRNA MessengerRNA Processing Post-TranscriptionalImprinting (psychology)Molecular Biology030304 developmental biology0303 health sciencesMessenger RNABinding SitesbiologyChemistryRNA-Binding ProteinsMolecular Sequence AnnotationCell BiologyChromatinChromatinCell biologyCrosstalk (biology)030220 oncology & carcinogenesisbiology.proteinRNA Polymerase IIProtein BindingResearch PaperRNA Biology
researchProduct