6533b86ffe1ef96bd12cdfa5
RESEARCH PRODUCT
Rpb4 and Puf3 imprint and post-transcriptionally control the stability of a common set of mRNAs in yeast
Ana I. Garrido-godinoFrancisco NavarroFrancisco Gutiérrez-santiagoVicent PelechanoJosé E. Pérez-ortínAlisa AlekseenkoA. B. Martinez-padillaIshaan GuptaLars M. SteinmetzLars M. Steinmetzsubject
Saccharomyces cerevisiae ProteinsTranscription GeneticRNA StabilityRNA polymerase IIRNA-binding proteinSaccharomyces cerevisiaeGenomic Imprinting03 medical and health sciences0302 clinical medicineTranscription (biology)Gene Expression Regulation FungalGene expressionRNA MessengerRNA Processing Post-TranscriptionalImprinting (psychology)Molecular Biology030304 developmental biology0303 health sciencesMessenger RNABinding SitesbiologyChemistryRNA-Binding ProteinsMolecular Sequence AnnotationCell BiologyChromatinChromatinCell biologyCrosstalk (biology)030220 oncology & carcinogenesisbiology.proteinRNA Polymerase IIProtein BindingResearch Paperdescription
ABSTRACTGene expression involving RNA polymerase II is regulated by the concerted interplay between mRNA synthesis and degradation, crosstalk in which mRNA decay machinery and transcription machinery respectively impact transcription and mRNA stability. Rpb4, and likely dimer Rpb4/7, seem the central components of the RNA pol II governing these processes. In this work we unravel the molecular mechanisms participated by Rpb4 that mediate the posttranscriptional events regulating mRNA imprinting and stability. By RIP-Seq, we analyzed genome-wide the association of Rpb4 with mRNAs and demonstrated that it targeted a large population of more than 1400 transcripts. A group of these mRNAs was also the target of the RNA binding protein, Puf3. We demonstrated that Rpb4 and Puf3 physically, genetically, and functionally interact and also affect mRNA stability, and likely the imprinting, of a common group of mRNAs. Furthermore, the Rpb4 and Puf3 association with mRNAs depends on one another. We also demonstrated, for the first time, that Puf3 associates with chromatin in an Rpb4-dependent manner. Our data also suggest that Rpb4 could be a key element of the RNA pol II that coordinates mRNA synthesis, imprinting and stability in cooperation with RBPs.
year | journal | country | edition | language |
---|---|---|---|---|
2020-07-25 | RNA Biology |