0000000001089705

AUTHOR

Angelo Gambino

showing 38 related works from this author

Ultrasound-guided musculoskeletal interventional procedures around the shoulder

2021

Ultrasound is a fast, accessible, reliable, and radiation-free imaging modality routinely used to assess the soft tissues around the shoulder. It enables to identify a wide range of pathological conditions. Furthermore, most ultrasound-guided musculoskeletal interventional procedures around the shoulder produce better results in terms of accuracy and clinical efficacy than those performed in a blinded fashion. Indeed, intra-articular and peri-articular interventional procedures can be easily performed under continuous ultrasound monitoring to ensure the correct position of the needle and to deliver the medication to a specific target. Several technical approaches and medications can be used…

medicine.medical_specialtyDry needlingRadiological and Ultrasound TechnologyBursitismedicine.diagnostic_testbusiness.industryshoulderultrasoundUltrasoundInterventional radiologyOsteoarthritisSuprascapular nervemedicine.diseaseCapsulitismedicine.anatomical_structureinterventional radiologymedicineMedicineRadiology Nuclear Medicine and imagingRotator cuffRadiologybusinessinjectionsJournal of Ultrasonography
researchProduct

The Elephant in the Machine: Proposing a New Metric of Data Reliability and its Application to a Medical Case to Assess Classification Reliability

2020

In this paper, we present and discuss a novel reliability metric to quantify the extent a ground truth, generated in multi-rater settings, as a reliable basis for the training and validation of machine learning predictive models. To define this metric, three dimensions are taken into account: agreement (that is, how much a group of raters mutually agree on a single case)

Computer sciencekneeMachine learningcomputer.software_genrelcsh:TechnologyTask (project management)lcsh:Chemistry03 medical and health sciencesMagnetic resonance imaging0302 clinical medicine0504 sociologyGeneral Materials Science030212 general & internal medicinelcsh:QH301-705.5InstrumentationCompetence (human resources)MRNetReliability (statistics)Fluid Flow and Transfer ProcessesGround truthreliabilityBasis (linear algebra)Point (typography)lcsh:Tbusiness.industryComputer Science::Information RetrievalProcess Chemistry and Technology05 social sciencesGeneral Engineering050401 social sciences methodslcsh:QC1-999Computer Science ApplicationsInter-rater reliabilitymachine learninglcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040inter-rater agreementArtificial intelligenceMetric (unit)lcsh:Engineering (General). Civil engineering (General)businessground truthcomputerlcsh:PhysicsApplied Sciences
researchProduct

Study of the accretion torque during the 2014 outburst of the X-ray pulsar GRO J1744−28

2017

We present the spectral and timing analysis of the X-ray pulsar GRO J1744-28 during its 2014 outburst using data collected with the X-ray satellites Swift, INTEGRAL, Chandra, and XMM-Newton. We derived, by phase-connected timing analysis of the observed pulses, an updated set of the source ephemeris. We were also able to investigate the spin-up of the X-ray pulsar as a consequence of the accretion torque during the outburst. Relating the spin-up rate and the mass accretion rate as $\dot{\nu}\propto\dot{M}^{\beta}$, we fitted the pulse phase delays obtaining a value of $\beta=0.96(3)$. Combining the results from the source spin-up frequency derivative and the flux estimation, we constrained …

accretion accretion discAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsEphemeris01 natural sciencesstars: neutronQuadratic equationPulsar0103 physical sciencesTorque010303 astronomy & astrophysicsGroup delay and phase delayHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsneutron; X-rays: binaries; X-rays: individual: GRO J1744-28 [accretion accretion disc; stars]Static timing analysisAstronomy and AstrophysicsX-rays: binarieAccretion (astrophysics)Space and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaX-rays: individual: GRO J1744-28X-ray pulsarMonthly Notices of the Royal Astronomical Society
researchProduct

Evidence of a non-conservative mass transfer for XTE J0929-314

2017

Context. In 1998 the first accreting millisecond pulsar, SAX J1808.4-3658, was discovered and to date 18 systems showing coherent, high frequency (> 100 Hz) pulsations in low mass X-ray binaries are known. Since their discovery, this class of sources has shown interesting and sometimes puzzling behaviours. In particular, apart from a few exceptions, they are all transient with very long X-ray quiescent periods implying a quite low averaged mass accretion rate onto the neutron star. Among these sources, XTE J0929-314 has been detected in outburst just once in about 15 years of continuous monitoring of the X-ray sky. Aims. We aim to demonstrate that a conservative mass transfer in this sys…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesStars: individual: XTE J0929-314AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesLuminosityPulsarMillisecond pulsar0103 physical sciencesX-rays: star010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsGravitational waveAstronomy and AstrophysicsAstronomy and AstrophysicGalactic planeOrbital periodX-rays: binarieStars: neutronGalaxyNeutron starSpace and Planetary Scienceindividual: XTE J0929-314; Stars: neutron; X-rays: binaries; X-rays: stars; Astronomy and Astrophysics; Space and Planetary Science [Stars]Astrophysics - High Energy Astrophysical Phenomena
researchProduct

Parietal subdural empyema as complication of acute odontogenic sinusitis: a case report

2014

Introduction: To date intracranial complication caused by tooth extractions are extremely rare. In particular parietal subdural empyema of odontogenic origin has not been described. A literature review is presented here to emphasize the extreme rarity of this clinical entity. Case presentation: An 18-year-old Caucasian man with a history of dental extraction developed dysarthria, lethargy, purulent rhinorrhea, and fever. A computed tomography scan demonstrated extensive sinusitis involving maxillary sinus, anterior ethmoid and frontal sinus on the left side and a subdural fluid collection in the temporal-parietal site on the same side. He underwent vancomycin, metronidazole and meropenem th…

Malemedicine.medical_specialtyAdolescentMaxillary sinusmedicine.medical_treatmentCase ReportSubdural empyemaSubdural SpaceDiagnosis DifferentialIntracranial infections Odontogenic sinusitis Paranasal sinusitis Subdural empyemaVancomycinMetronidazoleParietal LobemedicineHumansSinusitisSubdural spaceSinusitisCraniotomyOdontogenic sinusitisSubdural empyemaMedicine(all)Empyema SubduralFrontal sinusrhinorrheabusiness.industryParanasal sinusitisSettore MED/37 - NeuroradiologiaSequelaMeropenemGeneral MedicineMaxillary Sinusmedicine.diseaseAnti-Bacterial AgentsSurgerySettore MED/32 - AudiologiaTreatment Outcomemedicine.anatomical_structureSettore MED/31 - OtorinolaringoiatriaIntracranial infectionsAcute DiseaseTooth ExtractionThienamycinsmedicine.symptomTomography X-Ray ComputedbusinessCraniotomyFollow-Up Studies
researchProduct

Assessment of cerebral microbleeds by susceptibility-weighted imaging at 3T in patients with end-stage organ failure

2018

Purpose: Cerebral microbleeds (CMBs) are small rounded lesions representing cerebral hemosiderin deposits surrounded by macrophages that results from previous microhemorrhages. The aim of this study was to review the distribution of cerebral microbleeds in patients with end-stage organ failure and their association with specific end-stage organ failure risk factors. Materials and methods: Between August 2015 and June 2017, we evaluated 15 patients, 9 males, and 6 females, (mean age 65.5 years). Patients population was subdivided into three groups according to the organ failure: (a) chronic kidney failure (n = 8), (b) restrictive cardiomyopathy undergoing heart transplantation (n = 1), and (…

Malemedicine.medical_specialtyRadiology Nuclear Medicine and Imagingmedicine.medical_treatmentPopulationLiver transplantationOrgan transplantation030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicineMagnetic resonance imagingRisk FactorsmedicineHumanseducationNeuroradiologyAgedCerebral HemorrhageHeart transplantationeducation.field_of_studyCardiomyopathy RestrictiveTransplantationbusiness.industryCerebral microbleedGeneral MedicineSusceptibility-weighted imagingEnd-stage organ failureLiver TransplantationTransplantationCerebral microbleeds; End-stage organ failure; Magnetic resonance imaging; Susceptibility-weighted imaging; Transplantation; Radiology Nuclear Medicine and ImagingHemosiderinSusceptibility weighted imagingHeart TransplantationKidney Failure ChronicFemaleRadiologybusiness030217 neurology & neurosurgeryLiver Failure
researchProduct

A broadband spectral analysis of 4U 1702-429 using XMM-Newton and BeppoSAX data

2018

Most of the X-ray binary systems containing neutron stars classified as Atoll sources show two different spectral states, called soft and hard. Moreover, a large number of these systems show a reflection component relativistically smeared in their spectra, which gives information on the innermost region of the system. Our aim is to investigate the poorly studied broadband spectrum of the low mass X-ray binary system 4U 1702-429, which was recently analysed combining XMM-Newton and INTEGRAL data. The peculiar value of the reflection fraction brought us to analyse further broadband spectra of 4U 1702-429. We re-analysed the spectrum of the XMM-Newton/INTEGRAL observation of 4U 1702-429 in the…

High Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsX-rays: BinarieAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesBinary numberAstronomy and AstrophysicsAstrophysics01 natural sciencesCoronaStars: neutronSpectral lineNeutron starAccretion accretion diskSpace and Planetary ScienceIonizationStars: Individual: 4U 1702-4290103 physical sciencesReflection (physics)Black-body radiationAstrophysics - High Energy Astrophysical PhenomenaLow Mass010303 astronomy & astrophysicsAstronomy & Astrophysics
researchProduct

NuSTARandXMM–Newtonbroad-band spectrum of SAX J1808.4–3658 during its latest outburst in 2015

2018

The first discovered accreting millisecond pulsar, SAX J1808.4-3658, went into X-ray outburst in April 2015. We triggered a 100 ks XMM-Newton ToO, taken at the peak of the outburst, and a 55 ks NuSTAR ToO, performed four days apart. We report here the results of a detailed spectral analysis of both the XMM-Newton and NuSTAR spectra. While the XMM-Newton spectrum appears much softer than in previous observations, the NuSTAR spectrum confirms the results obtained with XMM-Newton during the 2008 outburst. We find clear evidence of a broad iron line that we interpret as produced by reflection from the inner accretion disk. For the first time, we use a self-consistent reflection model to fit the…

High Energy Astrophysical Phenomena (astro-ph.HE)line: formation line: identification stars: individual: SAX J1808.4-3658 stars: magnetic fields stars: neutron X-rays: binaries X-rays: generalPhysics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesBroad bandAstronomy and AstrophysicsAstrophysics01 natural sciencesSpectral lineRadial velocityNeutron starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceMillisecond pulsarInclination angle0103 physical sciencesSpectral analysisAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsLine (formation)Monthly Notices of the Royal Astronomical Society
researchProduct

Multiple sclerosis: High prevalence of the ‘central vein’ sign in white matter lesions on susceptibility-weighted images

2018

Purpose The aim of this study was to determine the occurrence and distribution of the ‘central vein’ sign in white matter lesions on susceptibility-weighted magnetic resonance images in patients with multiple sclerosis (MS) and cerebral small vessel disease (CSVD). Materials and methods T2-weighted and fluid-attenuated inversion recovery magnetic resonance images of 19 MS patients and 19 patients affected by CSVD were analysed for the presence and localisation of focal hyperintense white matter lesions. Lesions were subdivided into periventricular or non-periventricular (juxtacortical, subcortical, deep white matter and cerebellar) distributed. The number and localisation of lesions present…

AdultMalePathologymedicine.medical_specialtyMultiple SclerosisVeins030218 nuclear medicine & medical imagingWhite matterYoung Adult03 medical and health sciences0302 clinical medicinePrevalencemedicineHumansRadiology Nuclear Medicine and imagingIn patientSWI MR SM Central vein sign susceptibility-weighted imaging multiple sclerosis cerebral small vessel disease magnetic resonance imagingVeinAgedRetrospective StudiesHigh prevalencemedicine.diagnostic_testbusiness.industryMultiple sclerosisBrainMagnetic resonance imagingGeneral MedicineMiddle AgedGeneral Neuroimagingmedicine.diseaseMagnetic Resonance ImagingWhite MatterHyperintensitySWI MR SMmedicine.anatomical_structureCerebral Small Vessel DiseasesSusceptibility weighted imagingFemaleNeurology (clinical)business030217 neurology & neurosurgery
researchProduct

GrailQuest: hunting for atoms of space and time hidden in the wrinkle of Space-Time: A swarm of nano/micro/small-satellites to probe the ultimate str…

2021

AbstractGrailQuest(Gamma Ray Astronomy International Laboratory for QUantum Exploration of Space-Time) is a mission concept based on a constellation (hundreds/thousands) of nano/micro/small-satellites in low (or near) Earth orbits. Each satellite hosts a non-collimated array of scintillator crystals coupled with Silicon Drift Detectors with broad energy band coverage (keV-MeV range) and excellent temporal resolution (≤ 100 nanoseconds) each with effective area$\sim 100 \text {cm}^{2}$∼100cm2. This simple and robust design allows for mass-production of the satellites of the fleet. This revolutionary approach implies a huge reduction of costs, flexibility in the segmented launching strategy, …

PhysicsGamma-Ray Burstsγ-ray sourceAll-sky monitor; Constellation of satellites; Gamma-Ray Bursts; Quantum gravity; γ-ray sourcesPhotonbusiness.industryGravitational waveHigh-energy astronomyAstrophysics::High Energy Astrophysical PhenomenaConstellation of satellitesQuantum gravityAstronomy and AstrophysicsGamma-ray astronomyGamma-Ray Burstγ-ray sourcesOpticsConstellation of satelliteAll-sky monitorSpace and Planetary ScienceObservatoryTemporal resolutionSatellitebusinessGeocentric orbit
researchProduct

An XMM-Newton and INTEGRAL view on the hard state of EXO 1745-248 during its 2015 outburst

2017

CONTEXT - Transient low-mass X-ray binaries (LMXBs) often show outbursts lasting typically a few-weeks and characterized by a high X-ray luminosity ($L_{x} \approx 10^{36}-10^{38}$ erg/sec), while for most of the time they are found in X-ray quiescence ($L_X\approx10^{31} -10^{33}$ erg/sec). EXO 1745-248 is one of them. AIMS - The broad-band coverage, and the sensitivity of instrument on board of {\xmm} and {\igr}, offers the opportunity to characterize the hard X-ray spectrum during {\exo} outburst. METHODS - In this paper we report on quasi-simultaneous {\xmm} and {\igr} observations of the X-ray transient {\exo} located in the globular cluster Terzan 5, performed ten days after the begin…

PhotonX-rays: BinarieAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesTechniques: SpectroscopicAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsneutron; Techniques: Spectroscopic; X-rays: Binaries; X-rays: Bursts; X-rays: Individuals: EXO 1745-248; Astronomy and Astrophysics; Space and Planetary Science [Stars]01 natural sciencesIonization0103 physical sciencesX-rays: BurstAstrophysics::Solar and Stellar AstrophysicsEmission spectrum010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsAstronomy and AstrophysicsRadiusAstronomy and AstrophysicStars: neutronNeutron starSpace and Planetary ScienceGlobular clusterElectron temperatureAstrophysics - High Energy Astrophysical PhenomenaX-rays: Individuals: EXO 1745-248Doppler broadening
researchProduct

Spectral analysis of the dipping LMXB system XB 1916-053

2019

Context: XB 1916-053 is a low mass X-ray binary system (LMXB) hosting a neutron star (NS) and showing periodic dips. The spectrum of the persistent emission was modeled with a blackbody component having a temperature between 1.31 and 1.67 keV and with a Comptonization component with an electron temperature of 9.4 keV and a photon index $\Gamma$ between 2.5 and 2.9. The presence of absorption features associated with highly ionized elements suggested the presence of partially ionized plasma in the system. Aims: In this work we performed a study of the spectrum of XB 1916-053, which aims to shed light on the nature of the seed photons that contribute to the Comptonization component. Methods: …

stars: individual: XB 1916-053Absorption spectroscopyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesContext (language use)AstrophysicsX-rays: general01 natural sciencesSpectral lineformation identification Line neutron Stars Stars: individual: XB 1916-053 X-rays: binaries X-rays: generalX-rays: binariesstars: neutron0103 physical sciencesBlack-body radiationAbsorption (logic)010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsAstronomy and AstrophysicsNeutron starAbsorption edgeSpace and Planetary ScienceElectron temperatureline: formationAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]line: identification
researchProduct

Low bone mineral density in HIV-positive young Italians and migrants.

2020

Background Human immunodeficiency virus (HIV) infected individuals may have osteoporosis. We aimed to evaluate the bone mineral density (BMD) in naïve antiretroviral (ARV) treated HIV positive patients comparing native Italian group (ItG) to a Migrants group (MiG) upon arrival in Italy. Methods We conducted a cross-sectional study on 83 HIV patients less than 50 years old. We used the dual-energy X-ray absorptiometry (DXA) within six months from the HIV diagnosis. Participants were categorized as having low BMD if the femoral neck or total lumbar spine Z-score was– 2 or less. Results MiG showed low BMD more often than ItG (37.5% vs.13.6%), especially for the female gender (16.7% vs. 0.0%). …

MaleRNA virusesEuropean PeopleCritical Care and Emergency MedicineBone densityEpidemiologyOsteoporosisHIV InfectionsLogistic regressionPathology and Laboratory Medicine0302 clinical medicineAbsorptiometry PhotonImmunodeficiency VirusesBone DensityMedicine and Health SciencesEthnicities030212 general & internal medicineVitamin DConnective Tissue DiseasesMusculoskeletal SystemTrauma MedicineBone mineralTransients and MigrantsMultidisciplinaryQRvirus diseasesHuman immunodeficiency virus (HIV)HIV diagnosis and managementosteoporosis.Middle AgedItalian Peoplemedicine.anatomical_structureAnti-Retroviral AgentsItalyMedical MicrobiologyConnective TissueBone FractureViral PathogensVirusesMedicineInfectious diseasesFemalePathogensAnatomyTraumatic InjuryResearch ArticleAdultMedical conditionsmedicine.medical_specialtyScience030209 endocrinology & metabolismViral diseasesMicrobiology03 medical and health sciencesLumbarSex FactorsRheumatologyInternal medicineRetrovirusesmedicineVitamin D and neurologyHumansBoneMicrobial PathogensSkeletonFemoral neckbusiness.industryLentivirusOrganismsBiology and Life SciencesHIVBone fracturemedicine.diseaseDiagnostic medicineCD4 Lymphocyte CountCross-Sectional StudiesLogistic ModelsBiological TissueMedical Risk FactorsPeople and PlacesOsteoporosisPopulation GroupingsbusinessPloS one
researchProduct

SWIFT J1756.9-2508: spectral and timing properties of its 2018 outburst

2018

We discuss the spectral and timing properties of the accreting millisecond X-ray pulsar SWIFT J1756.9-2508 observed by XMM-Newton, NICER and NuSTAR during the X-ray outburst occurred in April 2018. The spectral properties of the source are consistent with a hard state dominated at high energies by a non-thermal power-law component with a cut-off at ~70 keV. No evidence of iron emission lines or reflection humps has been found. From the coherent timing analysis of the pulse profiles, we derived an updated set of orbital ephemerides. Combining the parameters measured from the three outbursts shown by the source in the last ~11 years, we investigated the secular evolution of the spin frequency…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)MillisecondAccretion (meteorology)010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsEphemerisOrbital period01 natural sciencesstars: neutronX-rays: binariesAmplitudePulsar13. Climate actionSpace and Planetary Science0103 physical sciencesNeutronEmission spectrumAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsAuthor Keywords:accretion accretion disc
researchProduct

Study of the reflection spectrum of the LMXB 4U 1702-429

2016

The source 4U 1702-429 (Ara X-1) is a low-mass X-ray binary system hosting a neutron star. Albeit the source is quite bright ( $\sim10^{37}$ erg s$^{-1}$) its broadband spectrum has never been studied. Neither dips nor eclipses have been observed in the light curve suggesting that its inclination angle is smaller than 60$^{\circ}$.We analysed the broadband spectrum of 4U 1702-429 in the 0.3-60 keV energy range, using XMM-Newton and INTEGRAL data, to constrain its Compton reflection component if it is present. After excluding the three time intervals in which three type-I X-ray bursts occurred, we fitted the joint XMM-Newton and INTEGRAL spectra obtained from simultaneous observations. A bro…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSpectral lineAccretion accretion diskSettore FIS/05 - Astronomia E AstrofisicaIonization0103 physical sciencesStars: individual: 4U 1702-429Emission spectrum010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysicsindividual: 4U 1702-429; Stars: neutron; X-rays: binaries; Astronomy and Astrophysics; Space and Planetary Science [Accretion accretion disks; Stars]PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsAstronomy and AstrophysicsAstronomy and AstrophysicLight curveX-rays: binarieAccretion (astrophysics)Stars: neutronNeutron starAbsorption edgeSpace and Planetary ScienceElectron temperatureAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Fe K α and Fe K β line detection in the NuSTAR spectrum of the ultra-bright Z source Scorpius X-1

2021

Context.Low-mass X-ray binaries hosting a low-magnetised neutron star, which accretes matter via Roche-lobe overflow, are generally grouped into two classes called Atoll and Z sources after the path described in their X-ray colour-colour diagrams. Scorpius X–1 is the brightest persistent low-mass X-ray binary known so far, and it is the prototype of the Z sources.Aims.We analysed the firstNuSTARobservation of this source to study its spectral emission, exploiting the high-statistics data collected by this satellite. The colour-colour diagram shows that the source was probably observed during the lower normal and flaring branches of its Z track. We separated the data from the two branches in…

PhysicsAccretionAccretion (meteorology)Continuum (design consultancy)Astronomy and AstrophysicsContext (language use)AstrophysicsStars: individual: Scorpius X-1X-rays: generalSpectral lineStars: neutronNeutron starX-rays: binariesSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceOptical depth (astrophysics)Accretion disksBlack-body radiationLine (formation)
researchProduct

Timing techniques applied to distributed modular high-energy astronomy: the H.E.R.M.E.S. project

2021

The HERMES-TP/SP (High Energy Rapid Modular Ensemble of Satellites -- Technologic and Scientific Pathfinder) is an in-orbit demonstration of the so-called distributed astronomy concept. Conceived as a mini-constellation of six 3U nano-satellites hosting a new miniaturized detector, HERMES-TP/SP aims at the detection and accurate localisation of bright high-energy transients such as Gamma-Ray Bursts. The large energy band, the excellent temporal resolution and the wide field of view that characterize the detectors of the constellation represent the key features for the next generation high-energy all-sky monitor with good localisation capabilities that will play a pivotal role in the future …

CubeSatsHigh energyHigh-energy astronomyReal-time computingFOS: Physical sciences01 natural sciences7. Clean energy010309 opticsX-rays0103 physical sciencesNano-satellitesTemporal triangulationInstrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsConstellationHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsbusiness.industryDetectorAstrophysics::Instrumentation and Methods for AstrophysicsModular designPathfinderTemporal resolutionGamma Ray BurstsTransient (oscillation)Astrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsbusinessSpace Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray
researchProduct

Broadband spectral analysis of MXB 1659−298 in its soft and hard state

2018

The X-ray transient eclipsing source MXB 1659-298 went into outburst in 1999 and 2015. During these two outbursts the source was observed by XMM-Newton, nuSTAR, and Swift/XRT. Using these observations, we studied the broadband spectrum of the source to constrain the continuum components and to verify whether it had a reflection component, as is observed in other X-ray eclipsing transient sources. We combined the available spectra to study the soft and hard state of the source in the 0.45-55 keV energy range. We report a reflection component in the soft and hard state. The direct emission in the soft state can be modeled with a thermal component originating from the inner accretion disk plus…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)stars: individual: MXB 1659−298010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical Phenomenaaccretion disksFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics01 natural sciencesAccretion (astrophysics)stars: neutronX-rays: binariesAccretion discaccretionSpace and Planetary ScienceAccretion disk0103 physical sciencesBroadbandAstrophysics::Solar and Stellar AstrophysicsSpectral analysisAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]010303 astronomy & astrophysicsStars: individual: MXB 1659-298
researchProduct

The cheating liver: imaging of focal steatosis and fatty sparing

2016

ABSTRACT: Focal steatosis and fatty sparing are a frequent finding in liver imaging, and can mimic solid lesions. Liver regional variations in the degree of fat accumulation can be related to vascular anomalies, metabolic disorders, use of certain drugs or coexistence of hepatic masses. CT and MRI are the modalities of choice for the noninvasive diagnosis of hepatic steatosis. Knowledge of CT and MRI appearance of focal steatosis and fatty sparing is crucial for an accurate diagnosis, and to rule-out other pathologic processes. This paper will review the CT and MRI techniques for the diagnosis of hepatic steatosis and the CT and MRI features of common and uncommon causes of focal steatosis …

AdultMalemedicine.medical_specialtyPathologyPrognosiComputed Tomography AngiographyAdipose tissuePredictive Value of Testliver030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicineFat accumulationPredictive Value of TestsRisk FactorsNon-alcoholic Fatty Liver DiseaseInternal medicinemedicineHumansFocal steatosiLiver imagingComputed tomography angiographyAgedintegumentary systemmedicine.diagnostic_testHepatologybusiness.industryRisk FactorFatty liverGastroenterologyMagnetic resonance imagingfatty sparingHepatologyMiddle AgedPrognosismedicine.diseaseMagnetic Resonance ImagingAdipose Tissue030220 oncology & carcinogenesisFemaleRadiologySteatosisbusinessCTMRIFatty Liver AlcoholicHuman
researchProduct

Timing of the accreting millisecond pulsar SAX J1748.9-2021 during its 2015 outburst

2016

We report on the timing analysis of the 2015 outburst of the intermittent accreting millisecond X-ray pulsar SAX J1748.9-2021 observed on March 4 by the X-ray satellite XMM-Newton. By phase-connecting the time of arrivals of the observed pulses, we derived the best-fit orbital solution for the 2015 outburst. We investigated the energy pulse profile dependence finding that the pulse fractional amplitude increases with energy while no significant time lags are detected. Moreover, we investigated the previous outbursts from this source, finding previously undetected pulsations in some intervals during the 2010 outburst of the source. Comparing the updated set of orbital parameters, in particul…

PhysicsOrbital elementsHigh Energy Astrophysical Phenomena (astro-ph.HE)Millisecondneutron; X-rays: binaries; Space and Planetary Science; Astronomy and Astrophysics [Accretion accretion disc; Stars]010308 nuclear & particles physicsGravitational waveAstrophysics::High Energy Astrophysical PhenomenaAstronomyLagrangian pointFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsOrbital periodX-rays: binarie01 natural sciencesStars: neutronAmplitudePulsarSpace and Planetary ScienceMillisecond pulsar0103 physical sciencesAccretion accretion discAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysics
researchProduct

Updating the orbital ephemeris of the dipping source XB 1254-690 and the distance to the source

2017

XB 1254-690 is a dipping low mass X-ray binary system hosting a neutron star and showing type I X-ray bursts. We aim at obtaining more accurate orbital ephemeris and at constraining the orbital period derivative of the system for the first time. In addition, we want to better constrain the distance to the source in order to locate the system in a well defined evolutive scenario. We apply for the first time an orbital timing technique to XB 1254-690, using the arrival times of the dips present in the light curves that have been collected during 26 years of X-ray pointed observations performed from different space missions. We estimate the dip arrival times using a statistical method that wei…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesLagrangian pointAstrophysicsStar (graph theory)Ephemeris01 natural sciencesstars: neutron0103 physical sciencesX-rays: star010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsstars: individual (XB 1254690)Astronomy and AstrophysicsQuadratic functionAstronomy and AstrophysicOrbital periodLight curveX-rays: binarieAstrometry and celestial mechanics: ephemerideNeutron starSpace and Planetary Scienceephemerides; stars: individual (XB 1254690); stars: neutron; X-rays: binaries; X-rays: stars; Astronomy and Astrophysics; Space and Planetary Science [Astrometry and celestial mechanics]Astrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaLow Mass
researchProduct

New orbital ephemerides for the dipping source 4U 1323-619: Constraining the distance to the source

2016

4U 1323-619 is a low mass X-ray binary system that shows type I X-ray bursts and dips. The most accurate estimation of the orbital period is 2.941923(36) hrs and a distance from the source that is lower than 11 kpc has been proposed. We aim to obtain the orbital ephemeris, the orbital period of the system, as well as its derivative to compare the observed luminosity with that predicted by the theory of secular evolution. We took the advantage of about 26 years of X-ray data and grouped the selected observations when close in time. We folded the light curves and used the timing technique, obtaining 12 dip arrival times. We fit the delays of the dip arrival times both with a linear and a quad…

neutron X-rays: binaries X-rays: stars ephemerides stars: individual: 4U 1323-619 [stars]010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesContext (language use)AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsEphemeris01 natural sciencesLuminositySettore FIS/05 - Astronomia E Astrofisica0103 physical sciences010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)stars: neutron X-rays: binaries X-rays: stars ephemerides stars: individual: 4U 1323-619Astronomy and AstrophysicsLight curveOrbital periodGalaxyNeutron starSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsLow MassAstrophysics - High Energy Astrophysical Phenomena
researchProduct

NuSTAR and NICER reveal IGR J17591-2342 as a new accreting millisecond X-ray pulsar

2018

We report the discovery by the Nuclear Spectroscopic Telescope Array (NuSTAR) and the Neutron Star Interior Composition Explorer (NICER) of the accreting millisecond X-ray pulsar IGR J17591-2342. Coherent X-ray pulsations around 527.4 Hz (1.9 ms) with a clear Doppler modulation were detected. This implies an orbital period of ∼8.8 h and a projected semi-major axis of ∼1.23 lt-s. With the binary mass function, we estimate a minimum companion mass of 0.42 M, obtained assuming a neutron star mass of 1.4[subscript ⊙] and an inclination angle lower than 60°, as suggested by the absence of eclipses or dips in the light curve of the source. The broad-band energy spectrum, obtained by combining NuS…

AccretionAstrophysics::High Energy Astrophysical Phenomenageneral [Pulsars]FOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSpectral linelaw.inventionTelescopeX-rays: binariesSettore FIS/05 - Astronomia E AstrofisicaPulsarlow-mass [Stars]lawstars: low-mass0103 physical sciencesStars: low-maAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Neutron Star Interior Composition Explorer010308 nuclear & particles physicsComputer Science::Information Retrievalaccretion disksneutron [Stars]Astronomy and AstrophysicsAstronomy and AstrophysicOrbital periodLight curveX-rays: binarieStars: neutronNeutron starPulsars: generalAccretion diskSpace and Planetary ScienceAccretion disksbinaries [X-rays]Astrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]X-ray pulsar
researchProduct

Indications of non-conservative mass-transfer in AMXPs

2019

Context. Since the discovery of the first Accreting Millisecond X-ray Pulsar SAX J1808.4-3658 in 1998, the family of these sources kept growing on. Currently, it counts 22 members. All AMXPs are transients with usually very long quiescence periods, implying that mass accretion rate in these systems is quite low and not constant. Moreover, for at least three sources, a non-conservative evolution was also proposed. Aims. Our purpose is to study the long term averaged mass-accretion rates in all the Accreting Millisecond X-ray Pulsars discovered so far, to investigate a non-conservative mass-transfer scenario. Methods. We calculated the expected mass-transfer rate under the hypothesis of a con…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesContext (language use)X-rays: starsAstrophysicsCompact star01 natural sciencesLuminositystars: neutronX-rays: binariesPulsarpulsars: general0103 physical sciencesX-rays: individuals: IGR J17498−2921X-rays: individuals: IGR J17498-2921010303 astronomy & astrophysicsX-rays: individuals: XTE J1814−338PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Accretion (meteorology)010308 nuclear & particles physicsGravitational waveAstronomy and AstrophysicsX-rays: binarieX-rays: individuals: XTE J1814-338Radiation pressureSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Magnetic dipole
researchProduct

Spectral analysis of the low-mass X-ray pulsar 4U 1822-371: Reflection component in a high-inclination system

2021

Context. The X-ray source 4U 1822-371 is an eclipsing low-mass X-ray binary and X-ray pulsar, hosting a NS that shows periodic pulsations in the X-ray band with a period of 0.59 s. The inclination angle of the system is so high (80–85°) that in principle, it should be hard to observe both the direct thermal emission of the central object and the reflection component of the spectrum because they are hidden by the outer edge of the accretion disc. Despite the number of studies carried out on this source, many aspects such as the geometry of the system, its luminosity, and its spectral features are still debated. Aims. Assuming that the source accretes at the Eddington limit, the analysis perf…

High Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaContinuum (design consultancy)FOS: Physical sciencesAstronomy and AstrophysicsRadiusAstrophysics01 natural sciencesaccretion accretion disks stars: neutron stars: individual: 4U 1822-371 X-rays: binaries X-rays: general eclipsesLuminositysymbols.namesakeSettore FIS/05 - Astronomia E AstrofisicaPulsarSpace and Planetary Science0103 physical sciencesEddington luminosityReflection (physics)symbolsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsX-ray pulsarEclipse
researchProduct

Using the transit of Venus to probe the upper planetary atmosphere

2015

The atmosphere of a transiting planet shields the stellar radiation providing us with a powerful method to estimate its size and density. In particular, because of their high ionization energy, atoms with high atomic number (Z) absorb short-wavelength radiation in the upper atmosphere, undetectable with observations in visible light. One implication is that the planet should appear larger during a primary transit observed in high energy bands than in the optical band. The last Venus transit in 2012 offered a unique opportunity to study this effect. The transit has been monitored by solar space observations from Hinode and Solar Dynamics Observatory (SDO). We measure the radius of Venus duri…

FOS: Physical sciencesGeneral Physics and AstronomyVenusBioinformatics7. Clean energyGeneral Biochemistry Genetics and Molecular BiologyArticleAtmosphereAtmosphere of VenusPhysics and Astronomy (all)Settore FIS/05 - Astronomia E AstrofisicaPlanetAstrophysics::Solar and Stellar AstrophysicsTransit (astronomy)Earth and Planetary Astrophysics (astro-ph.EP)[PHYS]Physics [physics]PhysicsBiochemistry Genetics and Molecular Biology (all)MultidisciplinarySecondary atmospherebiologyChemistry (all)Astrophysics::Instrumentation and Methods for AstrophysicsAstronomyGeneral ChemistryRadiusbiology.organism_classificationExoplanet13. Climate actionBiochemistry Genetics and Molecular Biology (all); Chemistry (all); Physics and Astronomy (all)Physics::Space PhysicsAstrophysics::Earth and Planetary Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Earth and Planetary AstrophysicsNature Communications
researchProduct

On the timing properties of SAX J1808.4-3658 during its 2015 outburst

2017

We present a timing analysis of the 2015 outburst of the accreting millisecond X-ray pulsar SAX J1808.4-3658, using non-simultaneous XMM-Newton and NuStar observations. We estimate the pulsar spin frequency and update the system orbital solution. Combining the average spin frequency from the previous observed, we confirm the long-term spin down at an average rate $\dot{\nu}_{\text{SD}}=1.5(2)\times 10^{-15}$ Hz s$^{-1}$. We also discuss possible corrections to the spin down rate accounting for mass accretion onto the compact object when the system is X-ray active. Finally, combining the updated ephemerides with those of the previous outbursts, we find a long-term orbital evolution compatibl…

Angular momentumAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesLagrangian pointAstrophysicsCompact star01 natural sciencespulsars: individual: SAX J1808.4-3658Gravitationstars: neutronX-rays: binariesSettore FIS/05 - Astronomia E AstrofisicaPulsar0103 physical sciences010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsGravitational waveAstronomy and AstrophysicsOrbital periodaccretion accretion discs; stars: neutron; pulsars: individual: SAX J1808.4-3658; X-rays: binaries13. Climate actionSpace and Planetary ScienceQuadrupole:accretion accretion discAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Updated orbital ephemeris of the ADC source X 1822-371: a stable orbital expansion over 40 years

2019

The source X 1822-371 is an eclipsing compact binary system with a period close to 5.57 hr and an orbital period derivative $\dot{P}_{\rm orb}$ of 1.51(7)$\times 10^{-10}$ s s$^{-1}$. The very large value of $\dot{P}_{\rm orb}$ is compatible with a super-Eddington mass transfer rate from the companion star, as suggested by X-ray and optical data. The XMM-Newton observation taken in 2017 allows us to update the orbital ephemeris and verify whether the orbital period derivative has been stable over the last 40 yr. We added to the X-ray eclipse arrival times from 1977 to 2008 two new values obtained from the RXTE and XMM-Newton observations performed in 2011 and 2017, respectively. We estimate…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsDerivativeEphemeris01 natural sciencesEclipseeclipsesLuminosityOrb (astrology)stars: neutronX-rays: binariesSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsSpin (physics)ephemerides010303 astronomy & astrophysicsEclipsePhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsstars: individual: X 1822-371Astronomy and AstrophysicsOrbital periodEphemerideOrbitSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

A possible solution of the puzzling variation of the orbital period of MXB 1659-298

2017

MXB 1659-298 is a transient neutron star Low-Mass X-ray binary system that shows eclipses with a periodicity of 7.1 hr. The source went to outburst in August 2015 after 14 years of quiescence. We investigate the orbital properties of this source with a baseline of 40 years obtained combining the eight eclipse arrival times present in literature with 51 eclipse arrival times collected during the last two outbursts. A quadratic ephemeris does not fit the delays associated with the eclipse arrival times and the addition of a sinusoidal term with a period of $2.31 \pm 0.02$ yr is required. We infer a binary orbital period of $P=7.1161099(3)$ hr and an orbital period derivative of $\dot{P}=-8.5(…

Star (game theory)FOS: Physical sciencesX-rays: starsAstrophysicsEphemeris01 natural sciencesJovianstars: neutronSettore FIS/05 - Astronomia E Astrofisicastars: individual: MXB 1659-2980103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsBinary system010303 astronomy & astrophysicsEclipsePhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsbinaries: eclipsingAstronomyAstronomy and AstrophysicsCoupling (probability)Orbital periodX-rays: binarieNeutron stareclipsing; stars: individual: MXB 1659-298; stars: neutron; X-rays: binaries; X-rays: stars [ephemerides; binaries]Space and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsephemerideAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Reflection component in the Bright Atoll Source GX 9+9

2020

GX 9+9 (4U 1728-16) is a low mass X-ray binary (LMXB) source harboring a neutron star. Although it belongs to the subclass of the bright Atoll sources together with GX 9+1, GX 3+1, and GX 13+1, its broadband spectrum is poorly studied and apparently does not show reflection features in the spectrum. To constrain the continuum well and verify whether a relativistic smeared reflection component is present, we analyze the broadband spectrum of GX 9+9 using {\it BeppoSAX} and \textit{XMM-Newton} spectra covering the 0.3-40 keV energy band. We fit the spectrum adopting a model composed of a disk-blackbody plus a Comptonized component whose seed photons have a blackbody spectrum (Eastern Model). …

PhotonAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsColor temperature010502 geochemistry & geophysics01 natural sciencesSpectral lineX-rays: binariesstars: neutronAccretion accretion diskSettore FIS/05 - Astronomia E Astrofisicaaccretion0103 physical sciencesBlack-body radiation010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)accretion disksAstronomy and AstrophysicsX-rays: binarieAccretion (astrophysics)Neutron starSpace and Planetary ScienceElectron temperatureAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaLow Mass[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]stars: individual: GX 9+9
researchProduct

Timing of the accreting millisecond pulsar IGR J17591-2342: evidence of spin-down during accretion

2020

We report on the phase-coherent timing analysis of the accreting millisecond X-ray pulsar IGR J17591-2342, using Neutron Star Interior Composition Explorer (NICER) data taken during the outburst of the source between 2018 August 15 and 2018 October 17. We obtain an updated orbital solution of the binary system. We investigate the evolution of the neutron star spin frequency during the outburst, reporting a refined estimate of the spin frequency and the first estimate of the spin frequency derivative ($\dot{\nu} \sim -7\times 10^{-14}$ Hz s$^{-1}$), confirmed independently from the modelling of the fundamental frequency and its first harmonic. We further investigate the evolution of the X-ra…

AccretionIGR J17591-2342Astrophysics::High Energy Astrophysical PhenomenaMagnetosphereFOS: Physical sciencesAstrophysics01 natural sciencesSettore FIS/05 - Astronomia E AstrofisicaPulsarMillisecond pulsar0103 physical sciencesaccretion accretion disc stars: neutron X-rays: binaries010303 astronomy & astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Neutron Star Interior Composition Explorer010308 nuclear & particles physicsAstronomy and Astrophysicsneutron [Stars]Accretion (astrophysics)Magnetic fieldNeutron starAmplitudeSpace and Planetary Sciencebinaries [X-rays]Astrophysics::Earth and Planetary AstrophysicsAccretion discAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Signature of the presence of a third body orbiting around XB 1916-053

2015

The ultra-compact dipping source \object{XB 1916-053} has an orbital period of close to 50 min and a companion star with a very low mass (less than 0.1 M$_{\odot}$). The orbital period derivative of the source was estimated to be $1.5(3) \times 10^{-11}$ s/s through analysing the delays associated with the dip arrival times obtained from observations spanning 25 years, from 1978 to 2002. The known orbital period derivative is extremely large and can be explained by invoking an extreme, non-conservative mass transfer rate that is not easily justifiable. We extended the analysed data from 1978 to 2014, by spanning 37 years, to verify whether a larger sample of data can be fitted with a quadra…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsElliptic orbitStar (game theory)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsQuadratic functionQuadratic form (statistics)Astronomy and AstrophysicOrbital periodEphemerideX-rays: binarieStars: neutronNeutron starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceStars: individual: XB 1916-053X-rays: starAstrophysics::Earth and Planetary AstrophysicsEccentricity (mathematics)Low MassAstrophysics - High Energy Astrophysical Phenomena
researchProduct

MRI radiomics-based machine-learning classification of bone chondrosarcoma.

2019

Abstract Purpose To evaluate the diagnostic performance of machine learning for discrimination between low-grade and high-grade cartilaginous bone tumors based on radiomic parameters extracted from unenhanced magnetic resonance imaging (MRI). Methods We retrospectively enrolled 58 patients with histologically-proven low-grade/atypical cartilaginous tumor of the appendicular skeleton (n = 26) or higher-grade chondrosarcoma (n = 32, including 16 appendicular and 16 axial lesions). They were randomly divided into training (n = 42) and test (n = 16) groups for model tuning and testing, respectively. All tumors were manually segmented on T1-weighted and T2-weighted images by drawing bidimensiona…

AdultMalemedicine.medical_specialtyArtificial intelligenceAppendicular skeletonChondrosarcomaFeature selectionBone NeoplasmsBone and BonesMachine LearningImage Interpretation Computer-AssistedmedicineHumansRadiology Nuclear Medicine and imagingRetrospective StudiesLearning classifier systemReceiver operating characteristicmedicine.diagnostic_testbusiness.industryReproducibility of ResultsMagnetic resonance imagingGeneral MedicineMiddle Agedmedicine.diseaseMagnetic Resonance ImagingRandom forestStatistical classificationmedicine.anatomical_structureTexture analysisROC CurveCartilaginous tumorFemaleRadiologyChondrosarcomaRadiomicNeoplasm GradingbusinessEuropean journal of radiology
researchProduct

Evidence of a non-conservative mass transfer in the ultra-compact X-ray source XB 1916-053

2020

The dipping source XB 1916-053 is a compact binary system with an orbital period of 50 min harboring a neutron star. Using ten new {\it Chandra} observations and one {\it Swift/XRT} observation, we are able to extend the baseline of the orbital ephemeris; this allows us to exclude some models that explain the dip arrival times. The Chandra observations provide a good plasma diagnostic of the ionized absorber and allow us to determine whether it is placed at the outer rim of the accretion disk or closer to the compact object. From the available observations we are able to obtain three new dip arrival times extending the baseline of the orbital ephemeris from 37 to 40 years. From the analysis…

stars: individual: XB 1916-053Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsCompact star01 natural sciencesLuminositystars: neutronX-rays: binariesaccretion0103 physical sciences010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsaccretion disksApsidal precessionAstronomy and AstrophysicsMass ratioOrbital periodRedshiftNeutron starSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Gravitational redshiftAstronomy & Astrophysics
researchProduct

Dense matter with eXTP

2019

In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry (eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be replicated in a terrestrial laboratory. The tightest statistical constraints on the dense matter equation of state will come from pulse profile modelling of accretion-powered pulsars, burst oscillation sources, and rotation-powered pulsars. Additional constraints will derive from spin measurements, burst spectra, and properties of the accretion flows in the vicinity of the neutron star. Under development by an international Consortium led by the Institute of High Energy Physics o…

GAMMA-RAY PULSARSdense matterAstrophysics::High Energy Astrophysical PhenomenaPolarimetryGeneral Physics and AstronomyFOS: Physical sciencesAstrophysicsNeutronBRIGHTNESS OSCILLATIONS7. Clean energy01 natural sciencesINNER ACCRETION DISKSSpectral lineX-raydense matter; equation of state; neutron; X-rays; Physics and Astronomy (all)Physics and Astronomy (all)Equacions d'estatneutronPulsar0103 physical sciencesMILLISECOND PULSARSX-raysNEUTRON-STARRADIUS CONSTRAINTS010306 general physics010303 astronomy & astrophysicsRELATIVISTIC IRON LINEequation of statePhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)LIGHT CURVESNeutronsEquation of stateQUASI-PERIODIC OSCILLATIONSX-RaysStarke Wechselwirkung und exotische Kerne – Abteilung BlaumAstrophysics::Instrumentation and Methods for AstrophysicsEQUATION-OF-STATEAccretion (astrophysics)Neutron star:Física::Astronomia i astrofísica [Àrees temàtiques de la UPC]Raigs XAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaDense matterDense matter
researchProduct

A re-analysis of the NuSTAR and XMM-Newton broad-band spectrum of Serpens X-1

2017

Context. High-resolution X-ray spectra of neutron star low-mass X-ray binaries (LMXBs) in the energy range 6.4-6.97 keV are often characterized by the presence of K alpha transition features of iron at different ionization stages. Since these lines are thought to originate by reflection of the primary Comptonization spectrum over the accretion disk, the study of these features allows us to investigate the structure of the accretion flow close to the central source. Thus, the study of these features gives us important physical information on the system parameters and geometry. Ser X-1 is a well studied LMXB that clearly shows a broad iron line. Several attempts to fit this feature as a smear…

PhysicsLine-of-sight010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaContinuum (design consultancy)Astronomy and AstrophysicsContext (language use)RadiusAstrophysicsX-rays: general01 natural sciencesX-rays: binarieSpectral linestars: neutronQuality (physics)Reflection (mathematics)Settore FIS/05 - Astronomia E AstrofisicaSpace and Planetary Science0103 physical sciencesstars: individual: Serpens X-1formation; line: identification; stars: individual: Serpens X-1; stars: neutron; X-rays: binaries; X-rays: general [line]line: formation010303 astronomy & astrophysicsline: identificationLine (formation)
researchProduct

A note on some discrepancies in convolution models in X-ray spectral analysis

2021

Convolution models are powerful tools in many fields of spectral and image analysis owing to their wide applicability, and X-ray astrophysical spectral analysis is no exception. We found that relativistically broadened Fe K${\alpha}$ line profiles obtained through many convolution models both within and without Xspec show deviations from the profiles produced by their non-convolution counterparts. These discrepancies depend on the energy grid considered and on the shape of both the kernel and the underlying spectrum, but can reach as high as 10% of the flux in certain energy bins. We believe that this effect should be taken into consideration, considering how often these models are used to …

High Energy Astrophysical Phenomena (astro-ph.HE)FOS: Physical sciencesAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaInstrumentation and Methods for Astrophysics (astro-ph.IM)
researchProduct

Observatory science with eXTP

2019

Disponible preprint en: arXiv:1812.04023v1 [astro-ph.HE] [v1] Mon, 10 Dec 2018 19:00:52 UTC (4,376 KB)

cataclysmic binariesAstronomyFIELD CAMERAS OBSERVATIONSspace research instruments nuclear astrophysics flare stars accretion and accretion disks mass loss and stellar winds cataclysmic binaries X-ray binaries supernova remnants active galactic nuclei X-ray bursts gamma-ray bursts gravitational wavesGeneral Physics and Astronomygamma-ray burstspace research instrument01 natural sciencesGamma ray burstsObservatoryAccretion and accretion disksAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsgravitational waveaccretion and accretion diskPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)supernova remnants[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph][SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]flare starsgamma-ray burstsAstrophysics::Instrumentation and Methods for Astrophysicsaccretion and accretion disks; active galactic nuclei; cataclysmic binaries; flare stars; gamma-ray bursts; gravitational waves; mass loss and stellar winds; nuclear astrophysics; space research instruments; supernova remnants; X-ray binaries; X-ray bursts; Physics and Astronomy (all)Space research instrumentsX ray burstSupernovaX-ray binariesgravitational wavesaccretion and accretion disksQUIETHigh massX-ray binarieMass loss and stellar windsNuclear astrophysicsGamma-ray burstsspace research instrumentsAstrophysics - High Energy Astrophysical PhenomenaPULSAR-WIND NEBULAEFAST RADIO-BURSTSAstrofísica nuclearActive galactic nucleusTIDAL DISRUPTIONSupernova remnantsAstrophysics::High Energy Astrophysical Phenomenanuclear astrophysicsPolarimetryFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsACCRETING NEUTRON-STARSaccretion and accretion disks; active galactic nuclei; cataclysmic binaries; flare stars; gamma-ray bursts; gravitational waves; mass loss and stellar winds; nuclear astrophysics; space research instruments; supernova remnants; X-ray binaries; X-ray burstsGravitational wavesPhysics and Astronomy (all)cataclysmic binarieSettore FIS/05 - Astronomia e AstrofisicaSUPERMASSIVE BLACK-HOLES0103 physical sciences010306 general physicsX-ray burstAstrophysics::Galaxy AstrophysicsCataclysmic binariesActive galactic nucleiflare starAstronomyWhite dwarfFlare starsStarssupernova remnantQB460-466 Astrophysics[SDU]Sciences of the Universe [physics]mass loss and stellar wind:Física::Astronomia i astrofísica [Àrees temàtiques de la UPC]active galactic nucleiX-RAYX-ray burstsSupernova remmantsmass loss and stellar windsX ray binaries[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]SEYFERT 1 GALAXYnuclear astrophysic
researchProduct