0000000001090013

AUTHOR

R. Mantovan

Role of B diffusion in the interfacial Dzyaloshinskii-Moriya interaction inTa/Co20Fe60B20/MgOnanowires

We report on current-induced domain wall motion in $\mathrm{Ta}/\mathrm{C}{\mathrm{o}}_{20}\mathrm{F}{\mathrm{e}}_{60}{\mathrm{B}}_{20}/\mathrm{MgO}$ nanowires. Domain walls are observed to move against the electron flow when no magnetic field is applied, while a field along the nanowires strongly affects the domain wall motion velocity. A symmetric effect is observed for up-down and down-up domain walls. This indicates the presence of right-handed domain walls, due to a Dzyaloshinskii-Moriya interaction (DMI) with a DMI coefficient $D=+0.06\phantom{\rule{0.16em}{0ex}}\mathrm{mJ}/{\mathrm{m}}^{2}$. The positive DMI coefficient is interpreted to be a consequence of B diffusion into the Ta bu…

research product

Magnetic domain-wall racetrack memory for high density and fast data storage

The racetrack memory device is a new concept of Magnetic RAM (MRAM) based on controlling domain wall (DW) motion in ferromagnetic nanowires. It promises ultra-high storage density thanks to the possibility to store multiple narrow DWS per memory cell. By using read and write heads based on magnetic tunnel junctions (MTJ) with perpendicular magnetic anisotropy (PMA) fast data access speed can also be achieved. Thereby the racetrack memory can be used as universal storage to address both embedded and standalone applications. In this paper, we present the device physics, integration circuit and architecture designs of a racetrack memory based on MTJs with PMA. Mixed SPICE simulations at 65 nm …

research product