0000000001090641

AUTHOR

Mariangela Librizzi

showing 22 related works from this author

PTHrP in differentiating human mesenchymal stem cells: Transcript isoform expression, promoter methylation, and protein accumulation

2013

Human PTHrP gene displays a complex organization with nine exons producing diverse mRNA variants due to alternative splicing at 5' and 3' ends and the existence of three different transcriptional promoters (P1, P2 and P3), two of which (P2 and P3) contain CpG islands. It is known that the expression of PTHrP isoforms may be differentially regulated in a developmental stage- and tissue-specific manner. To search for novel molecular markers of stemness/differentiation, here we have examined isoform expression in fat-derived mesenchymal stem cells both maintained in stem conditions and induced toward adipo- and osteogenesis. In addition, the expression of the splicing isoforms derived from P2 …

Gene isoformTranscription GeneticPTHrPCellular differentiationpromoter methylationBiologyOsteocytesBiochemistryGene expressionAdipocytesHumansProtein IsoformsadipogenesiSettore BIO/06 - Anatomia Comparata E CitologiaPromoter Regions Geneticmesenchymal stem cellCells CulturedMessenger RNAMesenchymal stem cellAlternative splicingParathyroid Hormone-Related ProteinCell DifferentiationMesenchymal Stem CellsExonsGeneral MedicineMethylationDNA MethylationosteogenesiMolecular biologyIntronsPTHrP; mesenchymal stem cells; osteogenesis; adipogenesis; gene expression; promoter methylationAlternative SplicingSettore BIO/18 - GeneticaGene Expression Regulationgene expressionCpG IslandsStem cellBiochimie
researchProduct

The conditioned medium from osteo-differentiating human mesenchymal stem cells affects the viability of triple negative MDA-MB231 breast cancer cells

2015

This study aimed to investigate the effect of conditioned media (CM) from osteo-differentiating and adipo-differentiating human mesenchymal stem cells (MSCs) isolated from lipoaspirates of healthy female donors on the viability of triple-negative breast cancer cells MDA-MB231. The CM of undifferentiated and differentiating MSCs were collected after 7, 14, 21 and 28 days of culture. The effects of MSC CM on cell proliferation were assessed using an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay after 24 h. The effects of osteo-differentiating cell CM on apoptotic promotion, cell cycle impairment, mitochondrial transmembrane potential dissipation, production of react…

0301 basic medicinemedicine.diagnostic_testCell growthClinical BiochemistryCellMesenchymal stem cellCell BiologyGeneral MedicineCell cycleBiologyBiochemistryFlow cytometryCell biology03 medical and health sciences030104 developmental biology0302 clinical medicinemedicine.anatomical_structureApoptosis030220 oncology & carcinogenesismedicineCancer researchMTT assayViability assayCell Biochemistry and Function
researchProduct

Cytotoxic effects of Jay Amin hydroxamic acid (JAHA), a ferrocene-based class I histone deacetylase inhibitor, on triple-negative MDA-MB231 breast ca…

2012

The histone deacetylase inhibitors (HDACis) are a class of chemically heterogeneous anticancer agents of which suberoylanilide hydroxamic acid (SAHA) is a prototypical member. SAHA derivatives may be obtained by three-dimensional manipulation of SAHA aryl cap, such as the incorporation of a ferrocene unit like that present in Jay Amin hydroxamic acid (JAHA) and homo-JAHA [ Spencer , et al. ( 2011 ) ACS Med. Chem. Lett. 2 , 358 - 362 ]. These metal-based SAHA analogues have been tested for their cytotoxic activity toward triple-negative MDA-MB231 breast cancer cells. The results obtained indicate that of the two compounds tested, only JAHA was prominently active on breast cancer cells with a…

medicine.drug_classCell SurvivalMetallocenesAntineoplastic AgentsApoptosisToxicologyHydroxamic AcidsStructure-Activity RelationshipIn vivoAnnexinmedicineTumor Cells CulturedCytotoxic T cellHumansFerrous CompoundsSettore BIO/06 - Anatomia Comparata E Citologiachemistry.chemical_classificationMembrane Potential MitochondrialReactive oxygen speciesDose-Response Relationship DrugMolecular StructureChemistryHistone deacetylase inhibitorCell CycleGeneral MedicineIn vitroHistone Deacetylase InhibitorsBiochemistryhistone deacetylase inhibitor breast cancer autophagy apoptosis mitochondria cell cycleApoptosisCancer researchHistone deacetylaseDrug Screening Assays AntitumorReactive Oxygen Species
researchProduct

The Histone Deacetylase Inhibitor JAHA Down-Regulates pERK and Global DNA Methylation in MDA-MB231 Breast Cancer Cells

2015

The histone deacetylase inhibitor N-1-(ferrocenyl)-N-8-hydroxyoctanediamide (JAHA) down-regulates extracellular-signal-regulated kinase (ERK) and its activated form in triple-negative MDA-MB231 breast cancer cells after 18 h and up to 30 h of treatment, and to a lesser extent AKT and phospho-AKT after 30 h and up to 48 h of treatment. Also, DNA methyltransferase 1 (DNMT1), 3b and, to a lesser extent, 3a, downstream ERK targets, were down-regulated already at 18 h with an increase up to 48 h of exposure. Methylation-sensitive restriction arbitrarily-primed (MeSAP) polymerase chain reaction (PCR) analysis confirmed the ability of JAHA to induce genome-wide DNA hypomethylation at 48 h of expos…

DNA methyltransferase (DNMT)medicine.drug_classDNA methyltransferaselcsh:TechnologymedicineGeneral Materials ScienceCancer epigeneticsSettore BIO/06 - Anatomia Comparata E Citologialcsh:Microscopyhistone deacetylase inhibitorlcsh:QC120-168.85QD0415Histone deacetylase 5lcsh:QH201-278.5extracellular-signal-regulated kinase (ERK)ChemistryHistone deacetylase 2lcsh:TCommunicationAKTHistone deacetylase inhibitorMolecular biologySettore BIO/18 - Geneticalcsh:TA1-2040DNA methylationDNMT1lcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringlcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971DNA hypomethylationQD0241
researchProduct

Jay Amin Hydroxamic Acid (JAHA), a histone deacetylase inhibitor with cytotoxic activity and the property to increase DNA repair of triple-negative M…

2017

Jay Amin Hydroxamic Acid (JAHA; N8-ferrocenylN1-hydroxy-octanediamide) is a ferrocene-containing analogue of the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA). JAHA’s cytotoxic activity on MDA-MB231 triple negative breast cancer (TNBC) cells at 72 h has been previously demonstrated with an IC50 of 8.45 M. JAHA’s lethal effect was found linked to perturbations of cell cycle, mitochondrial activity, signal transduction and autophagy mechanisms. In order to glean novel insights on how MDA-MB231 breast cancer cells respond to the cytotoxic effect induced by JAHA, and to compare the biological effect with the related compound SAHA, we have employed a combination o…

Settore BIO/18 - GeneticaJAHA SAHA comet assay DNA methylationSettore BIO/06 - Anatomia Comparata E Citologia
researchProduct

Synthesis of hybrid anticancer agents based on kinase and histone deacetylase inhibitors

2014

Fragments based on the VEGFR2i Semaxanib (SU5416, (vascular endothelial growth factor receptor-2\ud inhibitor) and the HDACi (histone deacetylase inhibitor) SAHA (suberanilohydroxamic acid) have been\ud merged to form a range of low molecular weight dual action hybrids. Vindication of this approach is\ud provided by SAR, docking studies, in vitro cancer cell line and biochemical enzyme inhibition data as well\ud as in vivo Xenopus data for the lead molecule (Z)-N1-(3-((1H-pyrrol-2-yl)methylene)-2-oxoindolin-5-yl)-\ud N8-hydroxyoctanediamide 6.

PharmacologyHistone deacetylase 5medicine.drug_classKinaseHistone deacetylase 2Organic ChemistryHistone deacetylase inhibitorQPharmaceutical ScienceBiologyBiochemistryHDACiVEGFRiHybrids.BiochemistryDocking (molecular)In vivoDrug DiscoverymedicineMolecular MedicineHistone deacetylaseSettore BIO/06 - Anatomia Comparata E CitologiaSemaxanibmedicine.drug
researchProduct

Cytotoxicity of the Urokinase-Plasminogen Activator Inhibitor Carbamimidothioic Acid (4-Boronophenyl) Methyl Ester Hydrobromide (BC-11) on Triple-Neg…

2015

BC-11 is an easily synthesized simple thiouronium-substituted phenylboronic acid, which has been shown to be cytotoxic on triple negative MDA-MB231 breast cancer cells by inducing a perturbation of cell cycle when administered at a concentration equal to its ED50 at 72 h (117 μM). Exposure of cells to BC-11, either pre-absorbed with a soluble preparation of the N-terminal fragment of urokinase-plasminogen activator (uPa), or in co-treatment with two different EGFR inhibitors, indicated that: (i) BC-11 acts via binding to the N-terminus of the enzyme where uPa- and EGF receptor-recognizing sites are present, thereby abrogating the growth-sustaining effect resulting from receptor binding

boronic acidPharmaceutical ScienceGene ExpressionApoptosisAnalytical ChemistryDrug DiscoveryCytotoxic T cellSettore BIO/06 - Anatomia Comparata E CitologiaCytotoxicityEGFR inhibitorschemistry.chemical_classificationCell CycleDrug SynergismCell cycleBoronic AcidsMitochondriaErbB ReceptorsBiochemistryChemistry (miscellaneous)Molecular MedicinecytotoxicityFemaleQD0241Antineoplastic AgentsArticlelcsh:QD241-441plasminogen activator inhibitorbreast cancerlcsh:Organic chemistryCell Line TumorHumansPhysical and Theoretical ChemistryMammary Glands HumanCell ProliferationQD0415Reactive oxygen speciesHydrobromideOrganic ChemistryEpithelial CellsBC-11Molecular biologyUrokinase-Type Plasminogen ActivatorPlasminogen InactivatorsEnzymechemistryApoptosisQuinazolinesMDA-MB231 cellsReactive Oxygen Speciesboronic acid; BC-11; plasminogen activator inhibitor; breast cancer; cytotoxicity; MDA-MB231 cellsMolecules
researchProduct

In Vitro Cytotoxic Effect of Aqueous Extracts from Leaves and Rhizomes of the Seagrass Posidonia oceanica (L.) Delile on HepG2 Liver Cancer Cells: Fo…

2023

Aqueous extracts from Posidonia oceanica’s green and brown (beached) leaves and rhizomes were prepared, submitted to phenolic compound and proteomic analysis, and examined for their potential cytotoxic effect on HepG2 liver cancer cells in culture. The chosen endpoints related to survival and death were cell viability and locomotory behavior, cell-cycle analysis, apoptosis and autophagy, mitochondrial membrane polarization, and cell redox state. Here, we show that 24 h exposure to both green-leaf- and rhizome-derived extracts decreased tumor cell number in a dose–response manner, with a mean half maximal inhibitory concentration (IC50) estimated at 83 and 11.5 μg of dry extract/mL, respecti…

phenolic compoundreactive oxygen specieSettore CHIM/10 - Chimica Degli AlimentiGeneral Immunology and MicrobiologycaspaseSettore BIO/05 - Zoologiaproteomic analysiscell biology; cell cycle; reactive oxygen species; wound healing assay; caspases; mitochondrial transmembrane potential; clonogenic assay; phenolic compounds; proteomic analysisGeneral Biochemistry Genetics and Molecular Biologycell biologymitochondrial transmembrane potentialcell cycleclonogenic assaySettore BIO/06 - Anatomia Comparata E CitologiaGeneral Agricultural and Biological Scienceswound healing assayBiology
researchProduct

Mid-region parathyroid hormone-related protein is a genome-wide chromatin-binding factor that promotes growth and differentiation of HB2 epithelial c…

2018

Human parathyroid hormone-related protein (PTHrP) is a polyhormone that undergoes proteolytic cleavage producing smaller peptides which exert diversified biological effects. PTHrP signalization is prominently involved in breast development and physiology, but the studies have been focused onto either N-terminal species or full-length protein introduced by gene transfer techniques. Our present work investigates for the first time the effect of the mid-region PTHrP secretory form, that is, the fragment [38-94], on HB2 non-tumoral breast epithelial cells. We examined viability/proliferation of cells grown in PTHrP-containing media supplemented with different serum concentration and on differen…

0301 basic medicinePTHrPCellClinical BiochemistryBiochemistryCell Line03 medical and health sciences0302 clinical medicineCell Line TumorGene expressionmedicineHumanscell growthBinding siteSettore BIO/06 - Anatomia Comparata E CitologiaCell ProliferationParathyroid hormone-related proteinChemistryCell growthChromatin bindingParathyroid Hormone-Related ProteinCell DifferentiationEpithelial CellsGeneral MedicineChromatinCell biologychromosome decorationSettore BIO/18 - Genetica030104 developmental biologymedicine.anatomical_structure030220 oncology & carcinogenesisbreast cellgene expressionMolecular MedicineFemaleReprogramminghormones hormone substitutes and hormone antagonists
researchProduct

Molecular Signatures Associated with Treatment of Triple-Negative MDA-MB231 Breast Cancer Cells with Histone Deacetylase Inhibitors JAHA and SAHA

2017

Jay Amin Hydroxamic Acid (JAHA; N8-ferrocenylN1-hydroxy-octanediamide) is a ferrocene-containing analogue of the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA). JAHA’s cytotoxic activity on MDA-MB231 triple negative breast cancer (TNBC) cells at 72 h has been previously demonstrated with an IC50 of 8.45 M. JAHA’s lethal effect was found linked to perturbations of cell cycle, mitochondrial activity, signal transduction and autophagy mechanisms. In order to glean novel insights on how MDA-MB231 breast cancer cells respond to the cytotoxic effect induced by JAHA, and to compare the biological effect with the related compound SAHA, we have employed a combination of…

0301 basic medicinemedicine.drug_classAntineoplastic AgentsTriple Negative Breast NeoplasmsBiologyHydroxamic AcidsToxicologyStructure-Activity Relationship03 medical and health sciences0302 clinical medicineCell Line TumormedicineHumansCytotoxic T cellFerrous CompoundsSettore BIO/06 - Anatomia Comparata E Citologiaskin and connective tissue diseasesVorinostatTriple-negative breast cancerVorinostatDose-Response Relationship DrugHistone deacetylase inhibitorComputational BiologyGeneral MedicineTriple Negative Breast NeoplasmsCell cycleHistone Deacetylase InhibitorsSettore BIO/18 - Genetica030104 developmental biologyBiochemistryCell culture030220 oncology & carcinogenesisCancer researchHistone deacetylaseJAHA Comet assay MDA-MB231 Histone Deacetylase InhibitorsDrug Screening Assays Antitumormedicine.drug
researchProduct

Biological Effect of a Hybrid Anticancer Agent Based on Kinase and Histone Deacetylase Inhibitors on Triple-Negative (MDA-MB231) Breast Cancer Cells

2016

We examined the effects of the histone deacetylase inhibitor (HDACi) suberoylanilide\ud hydroxamic acid (SAHA) combined with the vascular endothelial growth factor receptor-1/2 inhibitor\ud (3Z)-5-hydroxy-3-(1H-pyrrol-2-ylmethylidene)-2,3-dihydro-1H-indol-2-one on MDA-MB-231 breast\ud cancer cells (triple-negative) in the form of both a cocktail of the separate compounds and a chemically\ud synthesized hybrid (N-hydroxy-N'-[(3Z)-2-oxo-3-(1H-pyrrol-2-ylmethylidene)-2,3-dihydro-1H-indol-\ud 5-yl]octanediamide). Comparative flow cytometric and Western blot analyses were performed on\ud cocktail- and hybrid-treated cells to evaluate cell cycle distribution, autophagy/apoptosis modulation,\ud an…

0301 basic medicineVascular Endothelial Growth Factor AIndolesCytotoxicityTriple Negative Breast Neoplasmsbreast cancer; MDA-MB231 cells; histone deacetylase inhibitor; vascular endothelial growth factor receptor-2 inhibitor; cytotoxicity; cell cycle; apoptosis; autophagy; mitochondrial metabolismHydroxamic AcidsCatalysi0302 clinical medicineBreast cancerTumor Cells CulturedCytotoxic T cellSettore BIO/06 - Anatomia Comparata E CitologiaSpectroscopyVorinostatVascular endothelial growth factor receptor-2 inhibitorApoptosis; Autophagy; Breast cancer; Cell cycle; Cytotoxicity; Histone deacetylase inhibitor; MDA-MB231 cells; Mitochondrial metabolism; Vascular endothelial growth factor receptor-2 inhibitor; Catalysis; Molecular Biology; Spectroscopy; Computer Science Applications1707 Computer Vision and Pattern Recognition; Physical and Theoretical Chemistry; Organic Chemistry; Inorganic ChemistryKinaseHistone deacetylase inhibitorapoptosisComputer Science Applications1707 Computer Vision and Pattern RecognitionGeneral MedicineCell cycleFlow CytometryComputer Science ApplicationsCell biologyMDA-MB231 cell030220 oncology & carcinogenesisFemaleQD0241Programmed cell deathmedicine.drug_classCell SurvivalBlotting WesternAntineoplastic AgentsBiologyCell cycleCatalysisArticleInorganic Chemistry03 medical and health sciencesmedicineAutophagyHumansPhysical and Theoretical ChemistryProtein Kinase InhibitorsMolecular BiologyQD0415Histone deacetylase inhibitorAutophagyOrganic ChemistryApoptosiHistone Deacetylase Inhibitors030104 developmental biologyApoptosisMitochondrial metabolismMDA-MB231 cellsHistone deacetylaseInternational Journal of Molecular Sciences; Volume 17; Issue 8; Pages: 1235
researchProduct

Effect of transfection with PLP2 antisense oligonucleotides on gene expression of cadmium-treated MDA-MB231 breast cancer cells

2012

Emerging evidence indicates that cadmium (Cd) is able to regulate gene expression, drastically affecting the pattern of transcriptional activity in human normal and pathological cells. We have already shown that exposure of MDA-MB231 breast cancer cells to 5 μM CdCl(2) for 96 h, apart from significantly affecting mitochondrial metabolism, induces modifications of the expression level of genes coding for members of stress response-, mitochondrial respiration-, MAP kinase-, NF-κB-, and apoptosis-related pathways. In the present study, we have expanded the knowledge on the biological effects of Cd-breast cancer cell interactions, indicating PLP2 (proteolipid protein-2) as a novel member of the…

ProteolipidsApoptosisBreast NeoplasmsTransfectionBiochemistryAnalytical ChemistryCadmium ChlorideStress PhysiologicalCell Line TumorGene expressionHumansRNA MessengerSettore BIO/06 - Anatomia Comparata E Citologiaskin and connective tissue diseasesGeneCaspaseHeat-Shock ProteinsMARVEL Domain-Containing Proteinsbiologycadmium PLP2 breast cancer differential display-PCR caspase gene expressionTransfectionSuicide geneOligonucleotides AntisenseMolecular biologyGene Expression Regulation NeoplasticApoptosisMitogen-activated protein kinaseCaspasesCancer cellbiology.proteinNucleic Acid ConformationFemale
researchProduct

JA47, a new histone deacetylase inhibitor that induces cytotoxic effects on triple-negative MDA-MB231 breast cancer cells in vitro

2012

histone deacetylase inhibitor cytotoxicity breast cancer cells autophagy reactive oxygen species cell cycleSettore BIO/06 - Anatomia Comparata E Citologia
researchProduct

Gene and protein signatures associated to treatment of MDA-MB231 breast cancer cells with JAHA, a novel histone deacetylase inhibitor

2014

Settore BIO/06 - Anatomia Comparata E Citologiabreast cancer cells histone deacetylase inhibitor
researchProduct

Biological effect of an hybrid anticancer agent based on kinase and histone deacetylase inhibitor on breast cancer cells

2014

histone deacetylase inhibitor hybrid drug breast cancer cellsSettore BIO/06 - Anatomia Comparata E Citologia
researchProduct

Parathyroid Hormone Related Protein (PTHrP)-Associated Molecular Signatures in Tissue Differentiation and Non-Tumoral Diseases

2023

kidneypancreaskinSettore BIO/18 - Geneticacell biologygene expressionSettore BIO/06 - Anatomia Comparata E Citologiacartilageliverboneintestineadipose tissuelung
researchProduct

JAHA, a novel histone deacetylase inhibitor: cytotoxic effect on triple-negative breast cancer cells

2013

breast cancercytotoxicitySettore BIO/06 - Anatomia Comparata E Citologiahistone deacetylase inhibitor
researchProduct

Effect of conditioned media from osteo- and adipodifferentiating mesenchymal stem cells on triple negative MDA-MB231 breast cancer cells

2013

Settore BIO/06 - Anatomia Comparata E Citologiamesencymal stem cells conditioned media breast cancer
researchProduct

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) 1

2021

Contains fulltext : 232759.pdf (Publisher’s version ) (Closed access) In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to…

0301 basic medicineProgrammed cell deathSettore BIO/06AutophagosomeAutolysosome[SDV]Life Sciences [q-bio]lnfectious Diseases and Global Health Radboud Institute for Molecular Life Sciences [Radboudumc 4]Autophagy-Related ProteinsReviewComputational biology[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologySettore MED/0403 medical and health sciencesstressChaperone-mediated autophagyddc:570AutophagyLC3AnimalsHumanscancerSettore BIO/10Autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSet (psychology)Molecular Biologyvacuole.phagophore030102 biochemistry & molecular biologyvacuolebusiness.industryInterpretation (philosophy)AutophagyAutophagosomesneurodegenerationCell BiologyfluxMulticellular organismmacroautophagy030104 developmental biologyKnowledge baselysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleBiological AssayLysosomesbusinessBiomarkers[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Autophagy

2021

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide…

macroautophagy;autophagyAutophagosome[SDV]Life Sciences [q-bio]canceLC3 macroautophagyautophagosomeneurodegeneration;[SDV.BC]Life Sciences [q-bio]/Cellular BiologyAutophagy AutophagosomeNOstress vacuolestressautophagic processesstrerfluxLC3cancerguidelinesAutophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/06 - Anatomia Comparata E Citologia[SDV.BC] Life Sciences [q-bio]/Cellular BiologyComputingMilieux_MISCELLANEOUSMedaka oryzias latipesphagophorevacuoleQHneurodegenerationAutophagosome cancer flux LC3 lysosome macroautophagy neurodegeneration phagophore stress vacuoleautophagy; autophagic processes; guidelines; autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuolefluxmacroautophagystress.lysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/17 - ISTOLOGIARC
researchProduct

Effetto citotossico di un nuovo inibitore delle deacetilasi istoniche, JAHA, su cellule di tumore mammario umano triplo negativo

2013

histone deacetylase inhibitor breast cancer cytotoxicitySettore BIO/06 - Anatomia Comparata E Citologia
researchProduct

Cytotoxic effects induced by JA47, a novel histone deacetylase inhibitor (HDACi), on MDA-MB231 breast cancer cells

2012

histone deacetylase inhibitor breast cancer cytotoxicitySettore BIO/06 - Anatomia Comparata E Citologia
researchProduct