0000000001090744
AUTHOR
Michael Hitrik
Supersymmetric structures for second order differential operators
Necessary and sufficient conditions are obtained for a real semiclassical partial differential operator of order two to possess a supersymmetric structure. For the operator coming from a chain of oscillators, coupled to two heat baths, we show the non-existence of a smooth supersymmetric structure, for a suitable interaction potential, provided that the temperatures of the baths are different.
Spectra for Semiclassical Operators with Periodic Bicharacteristics in Dimension Two
We study the distribution of eigenvalues for selfadjoint $h$--pseudodifferential operators in dimension two, arising as perturbations of selfadjoint operators with a periodic classical flow. When the strength $\varepsilon$ of the perturbation is $\ll h$, the spectrum displays a cluster structure, and assuming that $\varepsilon \gg h^2$ (or sometimes $\gg h^{N_0}$, for $N_0 >1$ large), we obtain a complete asymptotic description of the individual eigenvalues inside subclusters, corresponding to the regular values of the leading symbol of the perturbation, averaged along the flow.
Weyl symbols and boundedness of Toeplitz operators
International audience; We study Toeplitz operators on the Bargmann space, with Toeplitz symbols that are exponentials of inhomogeneous quadratic polynomials. It is shown that the boundedness of such operators is implied by the boundedness of the corresponding Weyl symbols.
Semiclassical Gevrey operators and magnetic translations
We study semiclassical Gevrey pseudodifferential operators acting on the Bargmann space of entire functions with quadratic exponential weights. Using some ideas of the time frequency analysis, we show that such operators are uniformly bounded on a natural scale of exponentially weighted spaces of holomorphic functions, provided that the Gevrey index is $\geq 2$.
Adiabatic evolution and shape resonances
Motivated by a problem of one mode approximation for a non-linear evolution with charge accumulation in potential wells, we consider a general linear adiabatic evolution problem for a semi-classical Schrödinger operator with a time dependent potential with a well in an island. In particular, we show that we can choose the adiabatic parameter ε \varepsilon with ln ε ≍ − 1 / h \ln \varepsilon \asymp -1/h , where h h denotes the semi-classical parameter, and get adiabatic approximations of exact solutions over a time interval of length ε − N \varepsilon ^{-N} with an error O ( ε N ) {\mathcal O}(\varepsilon ^N) . Here N > 0 N>0 is arbitrary. \center Résumé \endcenter Motivés par un pro…
Tunnel effect and symmetries for Kramers–Fokker–Planck type operators
AbstractWe study operators of Kramers–Fokker–Planck type in the semiclassical limit, assuming that the exponent of the associated Maxwellian is a Morse function with a finite number n0 of local minima. Under suitable additional assumptions, we show that the first n0 eigenvalues are real and exponentially small, and establish the complete semiclassical asymptotics for these eigenvalues.
Resolvent estimates for elliptic quadratic differential operators
Sharp resolvent bounds for non-selfadjoint semiclassical elliptic quadratic differential operators are established, in the interior of the range of the associated quadratic symbol.
Quadratic ${\mathcal P}{\mathcal T}$-symmetric operators with real spectrum and similarity to self-adjoint operators
It is established that a -symmetric elliptic quadratic differential operator with real spectrum is similar to a self-adjoint operator precisely when the associated fundamental matrix has no Jordan blocks.This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’.
Characterizing boundedness of metaplectic Toeplitz operators
We study Toeplitz operators on the Bargmann space, with Toeplitz symbols given by exponentials of complex quadratic forms. We show that the boundedness of the corresponding Weyl symbols is necessary for the boundedness of the operators, thereby completing the proof of the Berger-Coburn conjecture in this case. We also show that the compactness of such Toeplitz operators is equivalent to the vanishing of their Weyl symbols at infinity.
Semiclassical Gevrey operators on exponentially weighted spaces of holomorphic functions
We provide a general overview of the recent works [“Semiclassical Gevrey operators in the complex domain”, Ann. Inst. Fourier (to appear), arXiv:2009.09125 (opens in new tab); J. Spectr. Theory 12, No. 1, 53–82 (2022; Zbl 1486.30104)] by the authors, devoted to continuity properties of semiclassical Gevrey pseudodifferential operators acting on a natural scale of exponentially weighted spaces of entire holomorphic functions.
Positivity, complex FIOs, and Toeplitz operators
International audience; We establish a characterization of complex linear canonical transformations that are positive with respect to a pair of strictly plurisubharmonic quadratic weights. As an application, we show that the boundedness of a class of Toeplitz operators on the Bargmann space is implied by the boundedness of their Weyl symbols.
Two Minicourses on Analytic Microlocal Analysis
These notes correspond roughly to the two minicourses prepared by the authors for the workshop on Analytic Microlocal Analysis, held at Northwestern University in May 2013. The first part of the text gives an elementary introduction to some global aspects of the theory of metaplectic FBI transforms, while the second part develops the general techniques of the analytic microlocal analysis in exponentially weighted spaces of holomorphic functions.