0000000001090886
AUTHOR
M. Hoek
The PANDA Barrel DIRC detector
Abstract The PANDA experiment at the new Facility for Antiproton and Ion Research in Europe (FAIR) at GSI, Darmstadt, will study fundamental questions of hadron physics and QCD using high-intensity cooled antiproton beams with momenta between 1.5 and 15 GeV/c. Efficient Particle Identification for a wide momentum range and the full solid angle is required for reconstructing the various physics channels of the PANDA program. Hadronic Particle Identification in the barrel region of the detector will be provided by a DIRC counter. The design is based on the successful BABAR DIRC with important improvements, such as focusing optics and fast photon timing. Several of these improvements, includin…
Investigation of Hamamatsu H8500 phototubes as single photon detectors
We have investigated the response of a significant sample of Hamamatsu H8500 MultiAnode PhotoMultiplier Tubes (MAPMTs) as single photon detectors, in view of their use in a ring imaging Cherenkov counter for the CLAS12 spectrometer at the Thomas Jefferson National Accelerator Facility. For this, a laser working at 407.2 nm wavelength was employed. The sample is divided equally into standard window type, with a spectral response in the visible light region, and UV-enhanced window type MAPMTs. The studies confirm the suitability of these MAPMTs for single photon detection in such a Cherenkov imaging application.
The large-area hybrid-optics CLAS12 RICH detector: Tests of innovative components
A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadronization and hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and densely packed and highly segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two…
Recent developments with microchannel-plate PMTs
Abstract Microchannel-plate (MCP) PMTs are the favored photon sensors for the DIRC detectors of the PANDA experiment at FAIR. Until recently the main drawback of MCP-PMTs were serious aging effects which led to a limited lifetime due to a rapidly decreasing quantum efficiency (QE) of the photo cathode (PC) as the integrated anode charge (IAC) increased. In the latest models of PHOTONIS and Hamamatsu an innovative atomic layer deposition (ALD) technique is applied to overcome these limitations. During the last five years comprehensive aging tests with ALD coated MCP-PMTs were performed and the results were compared to tubes treated with other techniques. The QE in dependence of the IAC was m…
Search for an Invisibly Decaying Z′ Boson at Belle II in e+e−→μ+μ−(e±μ∓) Plus Missing Energy Final States
Theories beyond the standard model often predict the existence of an additional neutral boson, the Z′. Using data collected by the Belle II experiment during 2018 at the SuperKEKB collider, we perform the first searches for the invisible decay of a Z′ in the process e+e-→μ+μ-Z′ and of a lepton-flavor-violating Z′ in e+e-→e±μZ′. We do not find any excess of events and set 90% credibility level upper limits on the cross sections of these processes. We translate the former, in the framework of an Lμ-Lτ theory, into upper limits on the Z′ coupling constant at the level of 5×10-2-1 for MZ′≤6 GeV/c2.
Operational Experience and Performance of the Belle II Pixel Detector
Proceedings of the 29th International Workshop on Vertex Detectors (VERTEX2020), Tsukuba, Japan (Online); Journal of the Physical Society of Japan 34, 010002 (2021). doi:10.7566/JPSCP.34.010002
Prototyping the PANDA Barrel DIRC
The design of the Barrel DIRC detector for the future PANDA experiment at FAIR contains several important improvements compared to the successful BABAR DIRC, such as focusing and fast timing. To test those improvements as well as other design options a prototype was build and successfully tested in 2012 with particle beams at CERN. The prototype comprises a radiator bar, focusing lens, mirror, and a prism shaped expansion volume made of synthetic fused silica. An array of micro-channel plate photomultiplier tubes measures the location and arrival time of the Cherenkov photons with sub-nanosecond resolution. The development of a fast reconstruction algorithm allowed to tune construction deta…
Search for Axionlike Particles Produced in e+e− Collisions at Belle II
We present a search for the direct production of a light pseudoscalar a decaying into two photons with the Belle II detector at the SuperKEKB collider. We search for the process e+e-→γa, a→γγ in the mass range 0.2<ma<9.7 GeV/c2 using data corresponding to an integrated luminosity of (445±3) pb-1. Light pseudoscalars interacting predominantly with standard model gauge bosons (so-called axionlike particles or ALPs) are frequently postulated in extensions of the standard model. We find no evidence for ALPs and set 95% confidence level upper limits on the coupling strength gaγγ of ALPs to photons at the level of 10-3 GeV-1. The limits are the most restrictive to date for 0.2<ma<1 GeV/c2.
Beam-normal single spin asymmetry in elastic electron scattering off 28Si and 90Zr
We report on a new measurement of the beam-normal single spin asymmetry $A_{\mathrm{n}}$ in the elastic scattering of 570 MeV transversely polarized electrons off $^{28}$Si and $^{90}$Zr at $Q^{2}=0.04\, \mathrm{GeV}^2/c^2$. The studied kinematics allow for a comprehensive comparison with former results on $^{12}$C. No significant mass dependence of the beam-normal single spin asymmetry is observed in the mass regime from $^{12}$C to $^{90}$Zr.
Deep sea tests of a prototype of the KM3NeT digital optical module
SIRE(opens in a new window)|View at Publisher| Export | Download | Add to List | More... European Physical Journal C Volume 74, Issue 9, 1 September 2014, 8p Deep sea tests of a prototype of the KM3NeT digital optical module: KM3NeT Collaboration (Article) Adrián-Martínez, S.a, Ageron, M.b, Aharonian, F.c, Aiello, S.d, Albert, A.e, Ameli, F.f, Anassontzis, E.G.g, Anghinolfi, M.h, Anton, G.i, Anvar, S.j, Ardid, M.a, de Asmundis, R.k, Balasi, K.l, Band, H.m, Barbarino, G.kn, Barbarito, E.o, Barbato, F.kn, Baret, B.p, Baron, S.p, Belias, A.lq, Berbee, E.m, van den Berg, A.M.r, Berkien, A.m, Bertin, V.b, Beurthey, S.b, van Beveren, V.m, Beverini, N.st, Biagi, S.uv, Bianucci, S.t, Billault, M.b,…
Tremendously increased lifetime of MCP-PMTs
Abstract Microchannel plate (MCP) PMTs are very attractive photon sensors for low light level applications in strong magnetic fields. However, until recently the main drawback of MCP-PMTs was their aging behavior which manifests itself in a limited lifetime due to a rapidly decreasing quantum efficiency (QE) of the photo cathode (PC) as the integrated anode charge (IAC) increases. In the latest models of PHOTONIS, Hamamatsu, and BINP novel techniques are applied to avoid these aging effects which are supposed to be mainly caused by feedback ion impinging on the PC and damaging it. For more than four years we are running a long-term aging test with new lifetime-enhanced MCP-PMT models by sim…
Search at the Mainz Microtron for light massive gauge bosons relevant for the muon g-2 anomaly.
A massive, but light, Abelian U(1) gauge boson is a well-motivated possible signature of physics beyond the standard model of particle physics. In this Letter, the search for the signal of such a U(1) gauge boson in electron-positron pair production at the spectrometer setup of the A1 Collaboration at the Mainz Microtron is described. Exclusion limits in the mass range of 40 MeV/c^{2} to 300 MeV/c^{2}, with a sensitivity in the squared mixing parameter of as little as ε^{2}=8×10^{-7} are presented. A large fraction of the parameter space has been excluded where the discrepancy of the measured anomalous magnetic moment of the muon with theory might be explained by an additional U(1) gauge …
The Belle II vertex detector integration
Belle II DEPFET, PXD, and SVD Collaborations: et al.
Measurements of the induced polarization in the quasi-elastic A(e,e′p→) process in non-coplanar kinematics
Abstract We report measurements of the induced polarization P → of protons knocked out from 2H and 12C via the A ( e , e ′ p → ) reaction. We have studied the dependence of P → on two kinematic variables: the missing momentum p miss and the “off-coplanarity” angle ϕ p q between the scattering and reaction planes. For the full 360° range in ϕ p q , both the normal ( P y ) and, for the first time, the transverse ( P x ) components of the induced polarization were measured with respect to the coordinate system associated with the scattering plane. P x vanishes in coplanar kinematics, however in non-coplanar kinematics, it is on the same scale as P y . We find that the dependence on ϕ p q is si…
A Disc-DIRC Cherenkov detector with high resolution micro channel plate photomultiplier tubes
The upcoming PANDA Experiment at FAIR in Germany will be equipped with a novel Cherenkov detector type for high-energy particle identification. This very compact Disc-DIRC detector uses a large disc-shaped fused silica plate of 2 cm thickness as its Cherenkov radiator. The internally reflected Cherenkov light is transported to the rim of the disc where it is focused by quartz light guides onto microchannel plate photomultiplier tubes (MCP-PMTs) with high spatial resolution (pitch 0.5 mm) and high time resolution (σ ≈ 100 ps). The device has an active area of about 3 m2 and will be able to identify pions and kaons with a separation power of more than 3σ in the momentum range up to 4 GeV/c. I…
Fast Frontend Electronics for high luminosity particle detectors
Future experiments of nuclear and particle physics are moving towards the high luminosity regime, in order to access suppressed processes like rare B decays or exotic charmonium resonances. In this scenario, high rate capability is a key requirement for electronics instrumentation, together with excellent timing resolution for precise event reconstruction. The development of dedicated FrontEnd Electronics (FEE) for detectors has become increasingly challenging. A current trend in R&D is towards multipurpose FEE which can be easily adapted to a great variety of detectors, without impairing the required high performance. We report on high-precision timing solutions which utilise high-band…
The PANDA DIRC Detectors at FAIR
The PANDA detector at the international accelerator Facility for Antiproton and Ion Research in Europe (FAIR) addresses fundamental questions of hadron physics. An excellent hadronic particle identification (PID) will be accomplished by two DIRC (Detection of Internally Reflected Cherenkov light) counters in the target spectrometer. The design for the barrel region covering polar angles between 22 deg. to 140 deg. is based on the successful BABAR DIRC with several key improvements, such as fast photon timing and a compact imaging region. The novel Endcap Disc DIRC will cover the smaller forward angles between 5 deg. (10 deg.) to 22 deg. in the vertical (horizontal) direction. Both DIRC coun…
DEPFET pixel detector in the Belle II experiment
Belle II DEPFET and PXD Collaboration: et al.
Measurements of the electron-helicity asymmetry in the quasi-elastic A(e→,e′p) process
Abstract We present measurements of the electron helicity asymmetry in quasi-elastic proton knockout from 2H and 12C nuclei by polarized electrons. This asymmetry depends on the fifth structure function, is antisymmetric with respect to the scattering plane, and vanishes in the absence of final-state interactions, and thus it provides a sensitive tool for their study. Our kinematics cover the full range in off-coplanarity angle ϕ p q , with a polar angle θ p q coverage up to about 8°. The missing energy resolution enabled us to determine the asymmetries for knock-out resulting in different states of the residual 11B system. We find that the helicity asymmetry for p-shell knockout from 12C d…
The PANDA Barrel DIRC
The PANDA detector at the international accelerator Facility for Antiproton and Ion Research in Europe (FAIR) addresses fundamental questions of hadron physics. Experiments concerning charmonium spectroscopy, the search for hybrids and glueballs and the interaction of hidden and open charm particles with nucleons and nuclei will be performed with antiproton beams impinging on hydrogen or nuclear targets. Cooled beams allow the precision scan of resonances in formation experiments. The momentum range of the antiproton beam between 1.5 GeV/c and 15 GeV/c tests predictions by perturbation theory and will reveal deviations originating from strong QCD . An excellent hadronic particle identificat…
First measurement of proton's charge form factor at very low $Q^2$ with initial state radiation
We report on a new experimental method based on initial-state radiation (ISR) in e-p scattering, in which the radiative tail of the elastic e-p peak contains information on the proton charge form factor ($G_E^p$) at extremely small $Q^2$. The ISR technique was validated in a dedicated experiment using the spectrometers of the A1-Collaboration at the Mainz Microtron (MAMI). This provided first measurements of $G_E^p$ for $0.001\leq Q^2\leq 0.004 (GeV/c)^2$.
Measurement of azimuthal asymmetries associated with deeply virtual Compton scattering on a longitudinally polarized deuterium target
Azimuthal asymmetries in exclusive electroproduction of a real photon from a longitudinally polarized deuterium target are measured with respect to target polarization alone and with respect to target polarization combined with beam helicity and/or beam charge. The asymmetries appear in the distribution of the real photons in the azimuthal angle $\phi$ around the virtual photon direction, relative to the lepton scattering plane. The asymmetries arise from the deeply virtual Compton scattering process and its interference with the Bethe-Heitler process. The results for the beam-charge and beam-helicity asymmetries from a tensor polarized deuterium target with vanishing vector polarization ar…
The Endcap Disc DIRC of PANDA
Abstract The Endcap Disc DIRC (EDD) for PANDA has been designed to identify traversing pions, kaons and protons in the future PANDA experiment. Its central part is a 2 cm thick fused silica plate. Focussing optics are attached to the outer rim of the plate, outside of the acceptance of the experiment. Fast, high-resolution MCP-PMTs, designed to register single Cherenkov photons, have been tested in magnetic field. Filters limit the spectral acceptance of the sensors to reduce dispersion effects and to extend their lifetime. A compact and fast readout is realized with ASICs. Analytical reconstruction algorithms allow for fast particle identification. The angular resolution of a DIRC prototyp…
Feasibility study for the measurement of πN transition distribution amplitudes at P¯ANDA in p¯p→J/ψπ0
The exclusive charmonium production process in (P) over barp annihilation with an associated pi 0 meson (p) over barp -> J/psi pi(0) is studied in the framework of QCD collinear factorization. The feasibility of measuring this reaction through the J/psi -> e(+) e(-) decay channel with the AntiProton ANnihilation at DArmstadt ((P) over bar ANDA) experiment is investigated. Simulations on signal reconstruction efficiency as well as the background rejection from various sources including the (P) over barp -> pi(+)pi(-)pi(0) and (p) over barp -> J/psi pi(0)pi(0) reactions are performed with PANDAROOT, the simulation and analysis software framework of the (P) over bar ANDA experiment. It is show…
Tests and developments of the PANDA Endcap Disc DIRC
The PANDA experiment at the future Facility for Antiproton and Ion Research (FAIR) requires excellent particle identification. Two different DIRC detectors will utilize internally reflected Cherenkov light of charged particles to enable the separation of pions and kaons up to momenta of 4 GeV/c. The Endcap Disc DIRC will be placed in the forward endcap of PANDA's central spectrometer covering polar angles between 5° and 22°. Its final design is based on MCP-PMTs for the photon detection and an optical system made of fused silica. A new prototype has been investigated during a test beam at CERN in May 2015 and first results will be presented. In addition a new synthetic fused silica material…
Precise Measurement of the D0 and D+ Lifetimes at Belle II
We report a measurement of the D^{0} and D^{+} lifetimes using D^{0}→K^{-}π^{+} and D^{+}→K^{-}π^{+}π^{+} decays reconstructed in e^{+}e^{-}→cc[over ¯] data recorded by the Belle II experiment at the SuperKEKB asymmetric-energy e^{+}e^{-} collider. The data, collected at center-of-mass energies at or near the ϒ(4S) resonance, correspond to an integrated luminosity of 72 fb^{-1}. The results, τ(D^{0})=410.5±1.1(stat)±0.8(syst) fs and τ(D^{+})=1030.4±4.7(stat)±3.1(syst) fs, are the most precise to date and are consistent with previous determinations.
Belle II pixel detector: Performance of final DEPFET modules
Belle-II DEPFET and PXD Collaboration: et al.
Heavy Hadrons – Exotic and Conventional Quarkonium Physics at Belle II
Abstract The Belle II experiment, now operating at the KEK laboratory in Japan, is a substantial upgrade of both the Belle detector and the KEKB e + e − accelerator. It aims to collect 50 times more data than existing B-Factory samples. Belle II is uniquely capable to study Charmonium and Bottomonium states and search for heavy exotic hadrons consisting of more than three quarks.
The PANDA Endcap Disc DIRC
Journal of Instrumentation 13(02), C02002 - C02002 (2018). doi:10.1088/1748-0221/13/02/C02002
The Barrel DIRC detector of PANDA
The PANDA experiment is one of the four large experiments being built at FAIR in Darmstadt. It will use a cooled antiproton beam on a fixed target within the momentum range of 1.5 to 15 GeV/c to address questions of strong QCD, where the coupling constant $\alpha_s \gtrsim 0.3$. The luminosity of up to $2 \cdot 10^{32} cm^{-2}s^{-1}$ and the momentum resolution of the antiproton beam down to \mbox{$\Delta$p/p = 4$\cdot10^{-5}$} allows for high precision spectroscopy, especially for rare reaction processes. Above the production threshold for open charm mesons the production of kaons plays an important role for identifying the reaction. The DIRC principle allows for a compact particle identif…
Comparison of recoil polarization in the C12(e→,e′p→) process for protons extracted from s and p shells
Abstract We present the first measurements of the double ratio of the polarization-transfer components ( P x ′ / P z ′ ) p / ( P x ′ / P z ′ ) s for knock-out protons from the s and p shells in C 12 measured by the C 12 ( e → , e ′ p → ) reaction in quasi-elastic kinematics. The data are compared to theoretical predictions in the relativistic distorted-wave impulse approximation. Our results show that the differences between s- and p-shell protons, observed when compared at the same initial momentum (missing momentum), largely disappear when the comparison is done at the same proton virtuality. We observe no difference in medium modifications between protons from the s and p shells with the…
Breakthrough in the lifetime of microchannel plate photomultipliers
Abstract Cherenkov detectors using the DIRC (Detection of Internally Reflected Cherenkov Light) principle are foreseen for particle identification in the P ¯ ANDA experiment at FAIR. Promising sensors for the detection of the Cherenkov light are the so-called micro-channel plate (MCP) photomultipliers (PMT). They have an excellent time resolution, can be operated at high gain for single photon detection and have a high resistivity against magnetic fields. The disadvantage of these devices was their limited lifetime, due to damage by feedback ions on the photocathode. The lifetime of various types of MCP-PMTs from different manufactures has been tested under conditions similar to that in the…
Timing in a FLASH
Abstract A prototype detector, called FLASH (Fast Light Acquiring Start Hodoscope), was built to provide precise Time-of-Flight (TOF) measurements and reference timestamps for detector setups at external beam lines. Radiator bars, made of synthetic fused silica, were coupled to a fast MCP-PMT with 64 channels and read out with custom electronics using Time-over-Threshold (TOT) for signal characterization. The TRB3 system, a high-precision TDC implemented in an FPGA, was used as data acquisition system. The performance of a system consisting of two FLASH units was investigated at a dedicated test experiment at the Mainz Microtron (MAMI) accelerator using its 855 MeV electron beam. The TOT me…
Development of an Endcap DIRC for PANDA
Abstract The aim of this research is to develop a planar DIRC detector showing advantages and performance similar to a classical, barrel shaped DIRC, but at smaller polar angles which cannot be accessed using a cylindrical geometry. The device will complement the PANDA Barrel DIRC by covering polar angles from 5° to 22°. The envisaged π /K-separation is ≥ 3 σ up to 4 GeV/c. A major challenge is the adaption of the device to the PANDA environment including a magnetic field of ~1–2 T, high rates and radiation, limited space for optics and sensors as well as the lack of a common first-level trigger. This paper discusses a detector design which forms a compromise between these constraints and a…
Alignment for the first precision measurements at Belle II
On March 25th 2019, the Belle II detector recorded the first collisions delivered by the SuperKEKB accelerator. This marked the beginning of the physics run with vertex detector. The vertex detector was aligned initially with cosmic ray tracks without magnetic field simultaneously with the drift chamber. The alignment method is based on Millepede II and the General Broken Lines track model and includes also the muon system or primary vertex position alignment. To control weak modes, we employ sensitive validation tools and various track samples can be used as alignment input, from straight cosmic tracks to mass-constrained decays. With increasing luminosity and experience, the alignment is …
Scintillators for photon detection at medium energies—a comparative study of BaF2, CeF3 and PbWO4
Abstract In a comparative study, the performance of sub-arrays consisting of large CeF 3 and PbWO 4 crystals has been investigated with high-energy photons below 1 GeV. Energy and time resolutions are determined and compared with the corresponding values for BaF 2 based on the experience of operating the electromagnetic calorimeter Taps .
Study of doubly strange systems using stored antiprotons
Bound nuclear systems with two units of strangeness are still poorly known despite their importance for many strong interaction phenomena. Stored antiprotons beams in the GeV range represent an unparalleled factory for various hyperon-antihyperon pairs. Their outstanding large production probability in antiproton collisions will open the floodgates for a series of new studies of systems which contain two or even more units of strangeness at the PANDA experiment at FAIR. For the first time, high resolution gamma-spectroscopy of doubly strange Lambda Lambda-hypernuclei will be performed, thus complementing measurements of ground state decays of Lambda Lambda-hypernuclei at J-PARC or possible …
The PANDA Barrel DIRC
The PANDA experiment at the international accelerator Facility for Antiproton and Ion Research in Europe (FAIR) near GSI, Darmstadt, Germany will address fundamental questions of hadron physics. Excellent Particle Identification (PID) over a large range of solid angles and particle momenta will be essential to meet the objectives of the rich physics program. Charged PID for the barrel region of the PANDA target spectrometer will be provided by a DIRC (Detection of Internally Reflected Cherenkov light) detector. The Barrel DIRC will cover the polar angle range of 22$^\circ$-140$^\circ$ and cleanly separate charged pions from kaons for momenta between 0.5 GeV/c and 3.5 GeV/c with a separation…
Recent results with lifetime enhanced microchannel-plate photomultipliers
Abstract The favored photon sensors for the DIRC (detection of internally reflected Cherenkov light) detectors at the PANDA (Anti-proton Annihilation at Darmstadt) experiment at FAIR (Facility for anti-proton and ion research) are micro-channel-plate photomultipliers (MCP-PMTs). The main problem until a few years ago was the limited lifetime of the MCP-PMTs caused by a rapid decrease in quantum efficiency (QE) of the photo cathode (PC) with increasing integrated anode charge (IAC). These limitations are overcome by applying an atomic layer deposition (ALD) coating on the MCPs, as recently done by PHOTONIS and Hamamatsu. During the last years’ tests of lifetime enhanced MCP-PMTs were perform…
Commissioning and performance of the Belle II pixel detector
Belle-II DEPFET and PXD Collaboration: et al.
Operation and characterization of a windowless gas jet target in high-intensity electron beams
Abstract A cryogenic supersonic gas jet target was developed for the MAGIX experiment at the high-intensity electron accelerator MESA. It will be operated as an internal, windowless target in the energy-recovering recirculation arc of the accelerator with different target gases, e.g., hydrogen, deuterium , helium, oxygen, argon, or xenon. Detailed studies have been carried out at the existing A1 multi-spectrometer facility at the electron accelerator MAMI. This paper focuses on the developed handling procedures and diagnostic tools, and on the performance of the gas jet target under beam conditions. Considering the special features of this type of target, it proves to be well suited for a n…
The DIRC detectors at the PANDA experiment
PANDA is an experiment at the new FAIR facility at GSI and will, among other physics goals,\ud perform charmonium spectroscopy and search for gluonic excitations using high luminosity antiproton beams up to 15 GeV/c. A high performance particle identification system applying DIRC\ud detectors will allow pion/kaon separation up to 4 GeV/c. A Barrel DIRC with fused silica radiator bars or plates will surround the target at a radial distance of 48 cm and will cover a polar\ud angle range of 22 to 140 degrees; a novel Endcap Disk DIRC built of a segmented fused silica\ud disk of 210 cm diameter will be installed in the forward region to cover the polar angles from\ud 5 to 22 degrees. The design…
Search for B+→K+νν¯ Decays Using an Inclusive Tagging Method at Belle II
A search for the flavor-changing neutral-current decay B^{+}→K^{+}νν[over ¯] is performed at the Belle II experiment at the SuperKEKB asymmetric energy electron-positron collider. The data sample corresponds to an integrated luminosity of 63 fb^{-1} collected at the ϒ(4S) resonance and a sample of 9 fb^{-1} collected at an energy 60 MeV below the resonance. Because the measurable decay signature involves only a single charged kaon, a novel measurement approach is used that exploits not only the properties of the B^{+}→K^{+}νν[over ¯] decay, but also the inclusive properties of the other B meson in the ϒ(4S)→BB[over ¯] event, to suppress the background from other B meson decays and light-qua…
Nuclear-mass dependence of azimuthal beam-helicity and beam-charge asymmetries in deeply virtual Compton scattering
The nuclear-mass dependence of azimuthal cross section asymmetries with respect to charge and longitudinal polarization of the lepton beam is studiedfor hard exclusive electroproduction of real photons. The observed beam-charge and beam-helicity asymmetries are attributed to the interference between the Bethe-Heitler and deeply virtual Compton scattering processes. For various nuclei, the asymmetries are extracted for both coherent and incoherent-enriched regions, which involve different (combinations of) generalized parton distributions. For both regions, the asymmetries are compared to those for a free proton, and no nuclear-mass dependence is found.
Frontend electronics for high-precision single photo-electron timing using FPGA-TDCs
Abstract The next generation of high-luminosity experiments requires excellent particle identification detectors which calls for Imaging Cherenkov counters with fast electronics to cope with the expected hit rates. A Barrel DIRC will be used in the central region of the Target Spectrometer of the planned PANDA experiment at FAIR. A single photo-electron timing resolution of better than 100 ps is required by the Barrel DIRC to disentangle the complicated patterns created on the image plane. R&D studies have been performed to provide a design based on the TRB3 readout using FPGA-TDCs with a precision better than 20 ps RMS and custom frontend electronics with high-bandwidth pre-amplifiers and …
Vertical Beam Polarization at MAMI
For the first time a vertically polarized electron beam has been used for physics experiments at MAMI in the energy range between 180 and 855 MeV. The beam-normal single-spin asymmetry $A_{\mathrm{n}}$, which is a direct probe of higher-order photon exchange beyond the first Born approximation, has been measured in the reaction $^{12}\mathrm C(\vec e,e')^{12}\mathrm C$. Vertical polarization orientation was necessary to measure this asymmetry with the existing experimental setup. In this paper we describe the procedure to orient the electron polarization vector vertically, and the concept of determining both its magnitude and orientation with the available setup. A sophisticated method has …
Lifetime of MCP-PMTs and other performance features
The ANDA experiment at FAIR will use DIRC detectors for the separation of hadrons. The compactness of the ANDA detector requires the image planes of these detectors to be placed inside the magnetic field of the solenoid. Due to this and other boundary conditions MCP-PMTs were identified as the only suitable photon sensors. Until recently the major obstacle for an application of MCP-PMTs in high rate experiments like ANDA were serious aging problems which led to damage at the photo-cathode and a fast declining quantum efficiency as the integrated anode charge (IAC) increased. With new countermeasures against the aging, in particular due to the application of an atomic layer deposition (ALD) …
New developments of the PANDA Disc DIRC detector
The DIRC principle (Detection of Internally Reflected Cherenkov light) allows a very compact\ud approach for particle identification detectors. The PANDA detector at the future FAIR facility at\ud GSI will use a Barrel-DIRC for the central region and a Disc DIRC for the forward angular region\ud between 5◦\ud and 22◦\ud . It will be the first time that a Disc DIRC is used in a high performance 4π\ud detector. To achieve this aim, different designs and technologies have been evaluated and tested.\ud This article will focus on the mechanical design and integration of the Disc DIRC with respect to\ud the PANDA environment.
Beam-normal single spin asymmetry in elastic electron scattering off Si and Zr
We report on a new measurement of the beam-normal single spin asymmetry An in the elastic scattering of 570 MeV transversely polarized electrons off $^{28}$Si and $^{90}$Zr at Q2=0.04 GeV2/c2. The studied kinematics allow for a comprehensive comparison with former results on $^{12}$C. No significant mass dependence of the beam-normal single spin asymmetry is observed in the mass regime from $^{12}$C to $^{90}$Zr.
Improved lifetime of microchannel-plate PMTs
Abstract The charged particle identification at the PANDA experiment will be mainly performed with DIRC detectors. Because of their advantageous properties the preferred photon sensors are MCP-PMTs. However, until recently these devices showed serious aging problems which resulted in a diminishing quantum efficiency (QE) of the photo cathode. By applying innovative countermeasures against the aging causes, the manufacturers recently succeeded in drastically improving the lifetime of MCP-PMTs. Especially the application of an ALD coating technique to seal the material of the micro-channels proves very powerful and results in a lifetime of ≈ 6 C / cm 2 integrated anode charge without a substa…
Resolution changes of MCP-PMTs in magnetic fields
Micro-channel plate photomultiplier tubes (MCP-PMTs) are chosen in many applications that have to cope with strong magnetic fields. The DIRC detectors of the PANDA experiment plan to employ them as they show excellent timing characteristics, radiation hardness, relatively low dark count rates and sufficient lifetime. This article mainly focuses on the performance of the position reconstruction of detected photons. Two different MCP-PMTs with segmented anode geometries have been tested in magnetic fields of different strengths. The variation of their performance has been studied. The measurements show improved position resolution and image shifts with increasing magnetic field strength.
The Barrel DIRC of PANDA
Cooled antiproton beams of unprecedented intensities in the momentum range of 1.5-15 GeV/c will be used for the PANDA experiment at FAIR to perform high precision experiments in the charmed quark sector. The PANDA detector will investigate antiproton annihilations with beams in the momentum range of 1.5 GeV/c to 15 GeV/c on a fixed target. An almost 4π acceptance double spectrometer is divided in a forward spectrometer and a target spectrometer. The charged particle identification in the latter is performed by ring imaging Cherenkov counters employing the DIRC principle.
Simulation and reconstruction of the PANDA Barrel DIRC
Hadronic particle identification (PID) in the barrel region of the PANDA experiment at the new Facility for Antiproton and Ion Research in Europe (FAIR) at GSI, Darmstadt will be provided by a DIRC (Detection of Internally Reflected Cherenkov light) counter. To optimize the performance and reduce the detector cost, detailed simulations of different design elements, such as the width of the radiators, the shape of the expansion volume, and the type of focusing system, were performed using Geant. Custom reconstruction algorithms were developed to match the detector geometry. We will discuss the single photon resolution and photon yield as well as the PID performance for the Barrel DIRC baseli…
Data quality monitors of vertex detectors at the start of the Belle II experiment
The Belle II experiment features a substantial upgrade of the Belle detector and will operate at the SuperKEKB energy-asymmetric e+e− collider at KEK in Tsukuba, Japan. The accelerator completed its first phase of commissioning in 2016, and the Belle II detector saw its first electron-positron collisions in April 2018. Belle II features a newly designed silicon vertex detector based on double-sided strip layers and DEPFET pixel layers. A subset of the vertex detector was operated in 2018 to determine background conditions (Phase 2 operation). The collaboration completed full detector installation in January 2019, and the experiment started full data taking. This paper will report on the fin…
The Endcap Disc DIRC detector of PANDA
Abstract At the international FAIR laboratory, an upcoming significant enlargement of the GSI installations near Darmstadt, Germany, the PANDA antiproton experiment will investigate fundamental questions of hadron physics in the charm quark energy range. Antiprotons in the 1.5 to15 GeV/c momentum range will interact with gas jet or pellet fixed targets. The Endcap Disc DIRC (Detection of Internally Reflected Cherenkov light) covers the forward endcap solid angle of the PANDA target spectrometer to positively identify charged kaons. Monte-Carlo simulations indicate that from 1 up to 4 GeV/c one can achieve kaon–pion separation with a separation power of at least 3 standard deviations. For th…
First Measurement of the $Q^2$ Dependence of the Beam-Normal Single Spin Asymmetry for Elastic Scattering off Carbon
We report on the first Q^{2}-dependent measurement of the beam-normal single spin asymmetry A_{n} in the elastic scattering of 570 MeV vertically polarized electrons off ^{12}C. We cover the Q^{2} range between 0.02 and 0.05 GeV^{2}/c^{2} and determine A_{n} at four different Q^{2} values. The experimental results are compared to a theoretical calculation that relates A_{n} to the imaginary part of the two-photon exchange amplitude. The result emphasizes that the Q^{2} behavior of A_{n} given by the ratio of the Compton to charge form factors cannot be treated independently of the target nucleus.
The Belle II Physics Book
cd. autorów: L. Cao48,‡, G. Caria145,‡, G. Casarosa57,‡, C. Cecchi56,‡,D. Cˇ ervenkov10,‡,M.-C. Chang22,‡, P. Chang92,‡, R. Cheaib146,‡, V. Chekelian83,‡, Y. Chen154,‡, B. G. Cheon28,‡, K. Chilikin77,‡, K. Cho70,‡, J. Choi14,‡, S.-K. Choi27,‡, S. Choudhury35,‡, D. Cinabro170,‡, L. M. Cremaldi146,‡, D. Cuesta47,‡, S. Cunliffe16,‡, N. Dash33,‡, E. de la Cruz Burelo9,‡, E. de Lucia52,‡, G. De Nardo54,‡, †Editor. ‡Belle II Collaborator. §Theory or external contributing author. M. De Nuccio16,‡, G. De Pietro59,‡, A. De Yta Hernandez9,‡, B. Deschamps129,‡, M. Destefanis60,‡, S. Dey116,‡, F.Di Capua54,‡, S.Di Carlo75,‡, J. Dingfelder129,‡, Z. Doležal10,‡, I. Domínguez Jiménez125,‡, T.V. Dong30,26,…
Endcap Disc DIRC for PANDA at FAIR
The Endcap Disc DIRC (EDD) has been developed to provide an excellent particle identification in the future PANDA experiment by separating pions and kaons up to a momentum of 4 GeV/c with a separation power of 3 s.d.. The detector is placed in the forward endcap of the PANDA target spectrometer. It consists of a fused silica plate and focusing elements placed at the outer rim, which focus the Cherenkov light on the photo cathodes of the attached MCP-PMTs. A compact and fast readout of the signals is realized with special ASICs. The performance has been studied and validated with different prototype setups in various testbeam facilities.
Frontend Electronics for high-precision single photo-electron timing
The next generation of high-luminosity experiments requires excellent particle identification detectors, which calls for imaging Cherenkov counters with fast electronics to cope with the expected hit rates. A Barrel DIRC will be used in the central region of the Target Spectrometer\ud of the planned PANDA experiment at FAIR. A single photo-electron timing resolution of better\ud than 100 ps RMS is required for the Barrel DIRC to disentangle the complicated patterns created\ud on the image plane. R&D studies have been performed to provide a design based on the TRB3\ud readout using FPGA-TDCs with a typical precision of 10 ps RMS and custom frontend electronics with high-bandwidth pre-amp…