0000000001101235
AUTHOR
J. Farre
Understanding sigma-phase precipitation in a stabilized austenitic stainless steel (316Nb) through complementary CALPHAD-based and experimental investigations
Abstract Sigma-phase precipitation in a 316Nb “stabilized” austenitic stainless steel was studied through complementary CALPHAD-based and dedicated experimental investigations. Thermokinetic calculations performed using Thermo-Calc (with the DICTRA module) and MatCalc software showed that the sigma phase (σ) precipitated directly at γ-austenite grain boundaries (GB) via a common solid-state reaction when carbon and nitrogen contents fell below a critical threshold. Residual δ ferrite was found to be more susceptible to σ-phase precipitation; this type of precipitation occurred via two mechanisms that depended on the concentration profiles of δ-ferrite stabilizing elements induced by previou…
The use of linear regression methods and Pearson’s correlation matrix to identify mechanical–physical–chemical parameters controlling the micro-electrochemical behaviour of machined copper
Abstract Machining introduces residual stresses at the specimen surface and modifies the microstructure and the texture in a small volume close to the surface. Such changes are important in controlling the corrosion behaviour of machined workpieces in the presence of an aggressive environment. In the present paper, the relationships between cutting parameters and the surface and subsurface characteristics of machined copper were first quantified experimentally using a complete plan of L 8 (2 3 ) and a linear regression method. The influence of surface characteristics on the local polarisation curves of machined surfaces was then investigated. The shear-type crystallographic orientation gene…