0000000001119435

AUTHOR

M. F. Ragland

showing 9 related works from this author

ON GENERALISED PRONORMAL SUBGROUPS OF FINITE GROUPS

2014

AbstractFor a formation $\mathfrak F$, a subgroup M of a finite group G is said to be $\mathfrak F$-pronormal in G if for each g ∈ G, there exists x ∈ 〈U,Ug〉$\mathfrak F$ such that Ux = Ug. Let f be a subgroup embedding functor such that f(G) contains the set of normal subgroups of G and is contained in the set of Sylow-permutable subgroups of G for every finite group G. Given such an f, let fT denote the class of finite groups in which f(G) is the set of subnormal subgroups of G; this is the class of all finite groups G in which to be in f(G) is a transitive relation in G. A subgroup M of a finite group G is said to be $\mathfrak F$-normal in G if G/CoreG(M) belongs to $\mathfrak F$. A sub…

Pure mathematicsGeneral MathematicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGMathematicsGlasgow Mathematical Journal
researchProduct

Permutable subnormal subgroups of finite groups

2009

The aim of this paper is to prove certain characterization theorems for groups in which permutability is a transitive relation, the so called PT -groups. In particular, it is shown that the finite solvable PT -groups, the finite solvable groups in which every subnormal subgroup of defect two is permutable, the finite solvable groups in which every normal subgroup is permutable sensitive, and the finite solvable groups in which conjugatepermutability and permutability coincide are all one and the same class. This follows from our main result which says that the finite modular p-groups, p a prime, are those p-groups in which every subnormal subgroup of defect two is permutable or, equivalentl…

Normal subgroupClass (set theory)PermutableMathematics::CombinatoricsGeneral MathematicsSubnormalModular p-groupGrups Teoria deCharacterization (mathematics)Prime (order theory)PT -groupSubnormal subgroupCombinatoricsMathematics::Group TheorySolvable groupPermutable primeÀlgebraAlgebra over a fieldMATEMATICA APLICADAMathematicsConjugate-Permutable
researchProduct

On a class of supersoluble groups

2014

A subgroup H of a finite group G is said to be S-semipermutable in G if H permutes with every Sylow q-subgroup of G for all primes q not dividing |H|. A finite group G is an MS-group if the maximal subgroups of all the Sylow subgroups of G are S-semipermutable in G. The aim of the present paper is to characterise the finite MS-groups.

Class (set theory)Finite groupGeneral MathematicsSylow theoremsGrups Teoria deAlgebraCombinatoricsBT-groupMS-groupÀlgebraAlgebra over a fieldFinite groupMATEMATICA APLICADASoluble PST-groupT0-groupMathematics
researchProduct

On generalised subnormal subgroups of finite groups

2013

Let be a formation of finite groups. A subgroup M of a finite group G is said to be -normal in G if belongs to . A subgroup U of a finite group G is called a K--subnormal subgroup of G if either U = G or there exist subgroups U = U0 ≤ U1 ≤ … ≤ Un = G such that Ui − 1 is either normal or -normal in Ui, for i = 1, 2, …, n. The K--subnormality could be regarded as the natural extension of the subnormality to formation theory and plays an important role in the structural study of finite groups. The main purpose of this paper is to analyse classes of finite groups whose K--subnormal subgroups are exactly the subnormal ones. Some interesting extensions of well-known classes of groups emerge.

AlgebraCombinatoricsSubnormal subgroupp-groupNormal subgroupSubgroupLocally finite groupGeneral MathematicsOmega and agemo subgroupIndex of a subgroupFitting subgroupMathematicsMathematische Nachrichten
researchProduct

A class of generalised finite T-groups

2011

Let F be a formation (of finite groups) containing all nilpotent groups such that any normal subgroup of any T-group in F and any subgroup of any soluble T-group in F belongs to F. A subgroup M of a finite group G is said to be F-normal in G if G/CoreG(M) belongs to F. Named after Kegel, a subgroup U of a finite group G is called a K- F-subnormal subgroup of G if either U=G or U=U0?U1???Un=G such that Ui?1 is either normal in Ui or Ui1 is F-normal in Ui, for i=1,2,...,n. We call a finite group G a TF-group if every K- F-subnormal subgroup of G is normal in G. When F is the class of all finite nilpotent groups, the TF-groups are precisely the T-groups. The aim of this paper is to analyse the…

Class (set theory)Algebra and Number TheoryT-groupsF-subnormal subgroupPronormal subgroupFormationCombinatoricsT-groupmedia_common.cataloged_instanceEuropean unionMATEMATICA APLICADAHumanitiesSubnormal subgroupMathematicsmedia_commonJournal of Algebra
researchProduct

Some local properties defining $\mathcal T_0$-groups and related classes of groups

2016

We call $G$ a $\operatorname{Hall}_{\mathcal X}$-group if there exists a normal nilpotent subgroup $N$ of $G$ for which $G/N'$ is an ${\mathcal X}$-group. We call $G$ a ${\mathcal T}_0$-group provided $G/\Phi(G)$ is a ${\mathcal T}$-group, that is, one in which normality is a transitive relation. We present several new local classes of groups which locally define $\operatorname{Hall}_{\mathcal X}$-groups and ${\mathcal T}_0$-groups where ${\mathcal X}\in\{ {\mathcal T},\mathcal {PT},\mathcal {PST}\}$; the classes $\mathcal {PT}$ and $\mathcal {PST}$ denote, respectively, the classes of groups in which permutability and S-permutability are transitive relations.

Discrete mathematicsTransitive relation$\mathcal{T}$-groupGroup (mathematics)General Mathematics010102 general mathematics$\mathcal{PST}$-group010103 numerical & computational mathematics01 natural sciencesFitting subgroupCombinatoricsSubnormal subgroupNilpotentSubgroupT-group20D1020D350101 mathematicsAlgebra over a fieldfinite solvable groupSubnormal subgroup20D20MathematicsPublicacions Matemàtiques
researchProduct

Some subgroup embeddings in finite groups: A mini review

2015

[EN] In this survey paper several subgroup embedding properties related to some types of permutability are introduced and studied. ª 2014 Production and hosting by Elsevier B.V. on behalf of Cairo University

Computer scienceMini Reviewmacromolecular substancesS-permutabilityMini reviewMathematics::Group TheoryComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONPermutabilityPrimitive subgroupAlgebra over a fieldFinite grouplcsh:Science (General)GeneralFinite grouplcsh:R5-920MultidisciplinaryMathematics::Combinatoricsmusculoskeletal neural and ocular physiologyAlgebranervous systemEmbeddingQuasipermutable subgrouplcsh:Medicine (General)MATEMATICA APLICADAAlgorithmSemipermutabilityMathematicsofComputing_DISCRETEMATHEMATICSlcsh:Q1-390Journal of Advanced Research
researchProduct

Some Characterisations of Soluble SST-Groups

2016

All groups considered in this paper are finite. A subgroup H of a group G is said to be SS-permutable or SS-quasinormal in G if H has a supplement K in G such that H permutes with every Sylow subgroup of K. Following [6], we call a group G an SST-group provided that SS-permutability is a transitive relation in G, that is, if A is an SS-permutable subgroup of B and B is an SS-permutable subgroup of G, then A is an SS-permutable subgroup of G. The main aim of this paper is to present several characterisations of soluble SST-groups.

Normal subgroupComplement (group theory)Finite groupTransitive relationAlgebra and Number TheoryGroup (mathematics)Metabelian group010102 general mathematicsSylow theorems010103 numerical & computational mathematics01 natural sciencesCombinatoricsSubgroup0101 mathematicsMathematicsCommunications in Algebra
researchProduct

Some local properties defining $T_0$-groups and related classes of groups

2016

[EN] We call G a Hall_X -group if there exists a normal nilpotent subgroup N of G for which G/N' is an X -group. We call G a T0 -group provided G/\Phi(G) is a T -group, that is, one in which normality is a transitive relation. We present several new local classes of groups which locally define Hall_X -groups and T_0 -groups where X ∈ {T , PT , PST }; the classes PT and PST denote, respectively, the classes of groups in which permutability and S-permutability are transitive relations.

PST-GroupFinite Solvable Group.Subnormal SubgroupT-GroupGrups Teoria deÀlgebraMATEMATICA APLICADA
researchProduct