0000000001122890

AUTHOR

Sampsa Koponen

0000-0002-2959-5699

showing 2 related works from this author

Machine Learning Regression Approaches for Colored Dissolved Organic Matter (CDOM) Retrieval with S2-MSI and S3-OLCI Simulated Data

2018

The colored dissolved organic matter (CDOM) variable is the standard measure of humic substance in waters optics. CDOM is optically characterized by its spectral absorption coefficient, a C D O M at at reference wavelength (e.g., ≈ 440 nm). Retrieval of CDOM is traditionally done using bio-optical models. As an alternative, this paper presents a comparison of five machine learning methods applied to Sentinel-2 and Sentinel-3 simulated reflectance ( R r s ) data for the retrieval of CDOM: regularized linear regression (RLR), random forest regression (RFR), kernel ridge regression (KRR), Gaussian process regression (GPR) and support vector machines (SVR). Two different datasets of radiative t…

Polynomial regression010504 meteorology & atmospheric sciencesArtificial neural networkbusiness.industry0211 other engineering and technologiesta117102 engineering and technologyMachine learningcomputer.software_genre01 natural sciencesremote sensing; CDOM; optically complex waters; linear regression; machine learning; Sentinel 2; Sentinel 3RegressionRandom forestSupport vector machineColored dissolved organic matterKrigingLinear regressionGeneral Earth and Planetary SciencesArtificial intelligencebusinesscomputer021101 geological & geomatics engineering0105 earth and related environmental sciencesMathematicsRemote Sensing
researchProduct

Retrieval of coloured dissolved organic matter with machine learning methods

2017

The coloured dissolved organic matter (CDOM) concentration is the standard measure of humic substance in natural waters. CDOM measurements by remote sensing is calculated using the absorption coefficient (a) at a certain wavelength (e.g. 440nm). This paper presents a comparison of four machine learning methods for the retrieval of CDOM from remote sensing signals: regularized linear regression (RLR), random forest (RF), kernel ridge regression (KRR) and Gaussian process regression (GPR). Results are compared with the established polynomial regression algorithms. RLR is revealed as the simplest and most efficient method, followed closely by its nonlinear counterpart KRR.

FOS: Computer and information sciencesComputer Science - Machine Learning010504 meteorology & atmospheric sciences0211 other engineering and technologiesFOS: Physical sciences02 engineering and technologyMachine learningcomputer.software_genre01 natural sciencesMachine Learning (cs.LG)Physics - GeophysicsKrigingDissolved organic carbonLinear regression021101 geological & geomatics engineering0105 earth and related environmental sciencesMathematicsPolynomial regressionbusiness.industry6. Clean waterGeophysics (physics.geo-ph)Random forestNonlinear systemColored dissolved organic matterKernel (statistics)Artificial intelligencebusinesscomputer
researchProduct