6533b85ffe1ef96bd12c1c64

RESEARCH PRODUCT

Machine Learning Regression Approaches for Colored Dissolved Organic Matter (CDOM) Retrieval with S2-MSI and S3-OLCI Simulated Data

Sampsa KoponenMartin HieronymiKari KallioAna B. RuescasGonxalo Mateo-garciaGustau Camps-valls

subject

Polynomial regression010504 meteorology & atmospheric sciencesArtificial neural networkbusiness.industry0211 other engineering and technologiesta117102 engineering and technologyMachine learningcomputer.software_genre01 natural sciencesremote sensing; CDOM; optically complex waters; linear regression; machine learning; Sentinel 2; Sentinel 3RegressionRandom forestSupport vector machineColored dissolved organic matterKrigingLinear regressionGeneral Earth and Planetary SciencesArtificial intelligencebusinesscomputer021101 geological & geomatics engineering0105 earth and related environmental sciencesMathematics

description

The colored dissolved organic matter (CDOM) variable is the standard measure of humic substance in waters optics. CDOM is optically characterized by its spectral absorption coefficient, a C D O M at at reference wavelength (e.g., ≈ 440 nm). Retrieval of CDOM is traditionally done using bio-optical models. As an alternative, this paper presents a comparison of five machine learning methods applied to Sentinel-2 and Sentinel-3 simulated reflectance ( R r s ) data for the retrieval of CDOM: regularized linear regression (RLR), random forest regression (RFR), kernel ridge regression (KRR), Gaussian process regression (GPR) and support vector machines (SVR). Two different datasets of radiative transfer simulations are used for the development and training of the machine learning regression approaches. Statistics comparison with well-established polynomial regression algorithms shows optimistic results for all models and band combinations, highlighting the good performance of the methods, especially the GPR approach, when all bands are used as input. Application to an atmospheric corrected OLCI image using the reflectance derived form the alternative neural network (Case 2 Regional) is also shown. Python scripts and notebooks are provided to interested users.

10.3390/rs10050786http://dx.doi.org/10.3390/rs10050786