0000000001125564

AUTHOR

D. Rivas

Size dependent carrier thermal escape and transfer in bimodally distributed self assembled InAs/GaAs quantum dots

We have investigated the temperature dependent recombination dynamics in two bimodally distributed InAs self assembled quantum dots samples. A rate equations model has been implemented to investigate the thermally activated carrier escape mechanism which changes from exciton-like to uncorrelated electron and hole pairs as the quantum dot size varies. For the smaller dots, we find a hot exciton thermal escape process. We evaluated the thermal transfer process between quantum dots by the quantum dot density and carrier escape properties of both samples. © 2012 American Institute of Physics.

research product

Two-Color Single-Photon Emission from In As Quantum Dots: Toward Logic Information Management Using Quantum Light

In this work, we propose the use of the Hanbury-Brown and Twiss interferometric technique and a switchable two-color excitation method for evaluating the exciton and noncorrelated electron-hole dynamics associated with single photon emission from indium arsenide (InAs) self-assembled quantum dots (QDs). Using a microstate master equation model we demonstrate that our single QDs are described by nonlinear exciton dynamics. The simultaneous detection of two-color, single photon emission from InAs QDs using these nonlinear dynamics was used to design a NOT AND logic transference function. This computational functionality combines the advantages of working with light/photons input/output device…

research product

Exciton and multiexciton optical properties of single InAs/GaAs site-controlled quantum dots

We have studied the optical properties of InAs site-controlled quantum dots (SCQDs) grown on pre-patterned GaAs substrates. Since InAs nucleates preferentially on the lithography motifs, the location of the resulting QDs is determined by the pattern, which is fabricated by local oxidation nanolithography. Optical characterization has been performed on such SCQDs to study the fundamental and excited states. At the ground state different exciton complex transitions of about 500 μeV linewidth have been identified and the fine structure splitting of the neutral exciton has been determined (≈65 μeV). The observed electronic structure covers the demands of future quantum information technologies.…

research product

Time resolved emission at 1.3 μm of a single InAs quantum dot by using a tunable fibre Bragg grating

Photoluminescence and time resolved photoluminescence from single metamorphic InAs/GaAs quantum dots (QDs) emitting at 1.3 mu m have been measured by means of a novel fibre-based characterization set-up. We demonstrate that the use of a wavelength tunable fibre Bragg grating filter increases the light collection efficiency by more than one order of magnitude as compared to a conventional grating monochromator. We identified single charged exciton and neutral biexciton transitions in the framework of a random population model. The QD recombination dynamics under pulsed excitation can be understood under the weak quantum confinement potential limit and the interaction between carriers at the …

research product

Sub-critical InAs layers on metamorphic InGaAs for single quantum dot emission at telecom wavelengths

We report on the design, the growth by MBE and the optical and morphological characterization of metamorphic InAs/InGaAs quantum dots (QD) with a density low enough to allow single dot characterization without the need of complex litographic steps to isolate single QDs. InAs sub-critical coverages were deposited on InxGa1-xAs metamorphic buffers (MBs) and the transition from 2D growth to 3D island nucleation was monitored by reflection high energy electron diffraction (RHEED). We discuss the fundamental differences of the sub-critical growth method compared with the Stranski-Krastanow one, also by considering available theoretical models. AFM confirmed that the density of QDs can be control…

research product

Early outcomes and complications following cardiac surgery in patients testing positive for coronavirus disease 2019: An international cohort study

The outbreak of severe acute respiratory syndromecoronavirus-2, the cause of coronavirus disease 2019 (COVID-19) in December 2019 represented a global emergency accounting for more than 2.5 million deaths worldwide.1 It has had an unprecedented influence on cardiac surgery internationally, resulting in cautious delivery of surgery and restructuring of services.2 Understanding the influence of COVID-19 on patients after cardiac surgery is based on assumptions from other surgical specialties and single-center studies. The COVIDSurg Collaborative conducted a multicenter cohort study, including 1128 patients, across 235 hospitals, from 24 countries demonstrating perioperative COVID-19 infection…

research product

The effect of high-In content capping layers on low-density bimodal-sized InAs quantum dots

[EN] The structural and morphological features of bimodal-sized InAs/(In) GaAs quantum dots with density in the low 10(9) cm(-2) range were analyzed with transmission electron microscopy and atomic force microscopy and were related to their optical properties, investigated with photoluminescence and time-resolved photoluminescence. We show that only the family of small quantum dots (QDs) is able to emit narrow photoluminescence peaks characteristic of single-QD spectra; while the behavior of large QDs is attributed to large strain fields that may induce defects affecting their optical properties, decreasing the optical intensity and broadening the homogeneous linewidth. Then, by using a rat…

research product

Machine learning risk prediction of mortality for patients undergoing surgery with perioperative SARS-CoV-2: the COVIDSurg mortality score

The British journal of surgery 108(11), 1274-1292 (2021). doi:10.1093/bjs/znab183

research product