0000000001135693
AUTHOR
Th. Rasing
Laser-driven quantum magnonics and terahertz dynamics of the order parameter in antiferromagnets
The impulsive generation of two-magnon modes in antiferromagnets by femtosecond optical pulses, so-called femto-nanomagnons, leads to coherent longitudinal oscillations of the antiferromagnetic order parameter that cannot be described by a thermodynamic Landau-Lifshitz approach. We argue that this dynamics is triggered as a result of a laser-induced modification of the exchange interaction. In order to describe the oscillations we have formulated a quantum mechanical description in terms of magnon pair operators and coherent states. Such an approach allowed us to} derive an effective macroscopic equation of motion for the temporal evolution of the antiferromagnetic order parameter. An impli…
Ultrafast laser-induced spin-lattice dynamics in the van der Waals antiferromagnet CoPS3
CoPS3 stands out in the family of the van der Waals antiferromagnets XPS3 (X=Mn, Ni, Fe, Co) due to the unquenched orbital momentum of the magnetic Co2+ ions which is known to facilitate the coupling of spins to both electromagnetic waves and lattice vibrations. Here, using a time-resolved magneto-optical pump-probe technique we experimentally study the ultrafast laser-induced dynamics of mutually correlated spins and lattice. It is shown that a femtosecond laser pulse acts as an ultrafast heater and thus results in the melting of the antiferromagnetic order. At the same time, the resonant pumping of the 4T1g - 4T2g electronic transition in Co2+ ions effectively changes their orbital moment…