0000000001145545

AUTHOR

Niklas Verloh

showing 2 related works from this author

Verwendung eines 3D Neuronalen Netzwerkes zur Lebervolumenbestimmmung im 3T MRT

2019

Einheit in Vielfalt
researchProduct

A 3D Deep Neural Network for Liver Volumetry in 3T Contrast-Enhanced MRI.

2020

 To create a fully automated, reliable, and fast segmentation tool for Gd-EOB-DTPA-enhanced MRI scans using deep learning. Datasets of Gd-EOB-DTPA-enhanced liver MR images of 100 patients were assembled. Ground truth segmentation of the hepatobiliary phase images was performed manually. Automatic image segmentation was achieved with a deep convolutional neural network. Our neural network achieves an intraclass correlation coefficient (ICC) of 0.987, a Sørensen-Dice coefficient of 96.7 ± 1.9 % (mean ± std), an overlap of 92 ± 3.5 %, and a Hausdorff distance of 24.9 ± 14.7 mm compared with two expert readers who corresponded to an ICC of 0.973, a Sørensen-Dice coefficient of 95.2 ± 2.8 %, and…

Ground truthArtificial neural networkComputer sciencebusiness.industryDeep learningPattern recognitionImage processingImage segmentationConvolutional neural networkMagnetic Resonance ImagingHausdorff distanceLiverImage Processing Computer-AssistedHumansRadiology Nuclear Medicine and imagingSegmentationArtificial intelligenceNeural Networks ComputerbusinessRoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin
researchProduct