6533b861fe1ef96bd12c4f6a
RESEARCH PRODUCT
A 3D Deep Neural Network for Liver Volumetry in 3T Contrast-Enhanced MRI.
Julian JürgensPhilipp WiggermannBertil SchmidtFrank WackerKristina RingeNiklas VerlohLukas Philipp BeyerHinrich B. WintherChristian HundtChristian StroszczynskiMichael Haimerlsubject
Ground truthArtificial neural networkComputer sciencebusiness.industryDeep learningPattern recognitionImage processingImage segmentationConvolutional neural networkMagnetic Resonance ImagingHausdorff distanceLiverImage Processing Computer-AssistedHumansRadiology Nuclear Medicine and imagingSegmentationArtificial intelligenceNeural Networks Computerbusinessdescription
To create a fully automated, reliable, and fast segmentation tool for Gd-EOB-DTPA-enhanced MRI scans using deep learning. Datasets of Gd-EOB-DTPA-enhanced liver MR images of 100 patients were assembled. Ground truth segmentation of the hepatobiliary phase images was performed manually. Automatic image segmentation was achieved with a deep convolutional neural network. Our neural network achieves an intraclass correlation coefficient (ICC) of 0.987, a Sørensen-Dice coefficient of 96.7 ± 1.9 % (mean ± std), an overlap of 92 ± 3.5 %, and a Hausdorff distance of 24.9 ± 14.7 mm compared with two expert readers who corresponded to an ICC of 0.973, a Sørensen-Dice coefficient of 95.2 ± 2.8 %, and an overlap of 90.9 ± 4.9 %. A second human reader achieved a Sørensen-Dice coefficient of 95 % on a subset of the test set. Our study introduces a fully automated liver volumetry scheme for Gd-EOB-DTPA-enhanced MR imaging. The neural network achieves competitive concordance with the ground truth regarding ICC, Sørensen-Dice, and overlap compared with manual segmentation. The neural network performs the task in just 60 seconds. · The proposed neural network helps to segment the liver accurately, providing detailed information about patient-specific liver anatomy and volume.. · With the help of a deep learning-based neural network, fully automatic segmentation of the liver on MRI scans can be performed in seconds.. · A fully automatic segmentation scheme makes liver segmentation on MRI a valuable tool for treatment planning..· Winther H, Hundt C, Ringe KI et al. A 3D Deep Neural Network for Liver Volumetry in 3T Contrast-Enhanced MRI. Fortschr Röntgenstr 2021; 193: 305 - 314.ZIEL: Ziel dieser Studie war es, eine vollautomatische und zuverlässige Lebervolumetrie in der kontrastverstärkten MRT basierend auf 3D-Deep-Learning-Algorithmen zu entwickeln. Datensätze von Gd-EOB-DTPA-verstärkten Leber-MR-Bildern von 100 Patienten wurden von einem in der hepatobiliären Bildgebung erfahrenen Radiologen manuell segmentiert und als Grundwahrheitssegmentierung angenommen. Die Datensätze wurden mittels einem Kreuzvalidierungsverfahren (k = 4) in Trainings- und Validierungsdatensatz eingeteilt und einem neuronalen Netzwerk zur automatischen Bildsegmentierung zugeführt. Zusätzlich wurde ein Teil der Daten (n = 9) von einem zweiten Radiologen zur Bestimmung einer Interobserver Variability segmentiert. Die manuelle Segmentierung erreichte einen Inter-Klassen-Korrelationskoeffizienten (ICC) von 0,973, einen Sørensen-Dice-Index von 95,2 ± 2,8 % und eine Überlappung von 90,9 ± 4,9 %. Das neuronale Netzwerk erreichte einen ICC von 0,98, einen Sørensen-Dice-Index von 96 ± 1,9 % und eine Überlappung von 92 ± 3,5 % sowie eine Hausdorff-Distanz von 24,9 ± 14,7 mm. Diese Studie präsentiert ein vollautomatisches Lebervolumetrie-Schema für MR-Bildgebung. Das neuronale Netzwerk erreichte eine kompetitive Übereinstimmung mit der Grundwahrheit bezüglich ICC, Sørensen-Dice-Index und Überlappung im Vergleich zu einer manuellen Segmentierung. Das neuronale Netzwerk erledigte die Aufgabe in nur 60 Sekunden. · Das vorgeschlagene neuronale Netzwerk hilft bei der genauen Segmentierung der Leber und liefert detaillierte Informationen über die patientenspezifische Anatomie und das Volumen der Leber.. · Mithilfe eines neuronalen Netzes kann eine vollautomatische Segmentierung der Leber in MRT-Scans in Sekundenschnelle durchgeführt werden.. · Ein vollautomatisches Segmentierungsschema macht die Lebersegmentierung in der MRT zu einem wertvollen Instrument für die Behandlungsplanung..
year | journal | country | edition | language |
---|---|---|---|---|
2020-09-04 | RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin |