0000000001147010
AUTHOR
Andreas Kern
HSF1-controlled and age-associated chaperone capacity in neurons and muscle cells of C. elegans.
Protein stability under changing conditions is of vital importance for the cell and under the control of a fine-tuned network of molecular chaperones. Aging and age-related neurodegenerative diseases are directly associated with enhanced protein instability. Employing C. elegans expressing GFP-tagged luciferase as a reporter for evaluation of protein stability we show that the chaperoning strategy of body wall muscle cells and neurons is significantly different and that both are differently affected by aging. Muscle cells of young worms are largely resistant to heat stress, which is directly mediated by the stress response controlled through Heat Shock Transcription Factor 1. During recover…
Heterodimer formation of wild-type and amyotrophic lateral sclerosis-causing mutant Cu/Zn-superoxide dismutase induces toxicity independent of protein aggregation
Recent studies provide evidence that wild-type Cu/Zn-superoxide dismutase (SOD1(hWT)) might be an important factor in mutant SOD1-mediated amyotrophic lateral sclerosis (ALS). In order to investigate its functional role in the pathogenesis of ALS, we designed fusion proteins of two SOD1 monomers linked by a polypeptide. We demonstrated that wild-type-like mutants, but not SOD1(G85R) homodimers, as well as mutant heterodimers including SOD1(G85R)-SOD1(hWT) display dismutase activity. Mutant homodimers showed an increased aggregation compared with the corresponding heterodimers in cell cultures and transgenic Caenorhabditis elegans, although SOD1(G85R) heterodimers are more toxic in functiona…
Protein content and lipid profiling of isolated native autophagosomes
AbstractAutophagy is a central eukaryotic catabolic pathway responsible for clearance and recycling of an extensive portfolio of cargoes, which are packed in vesicles, called autophagosomes, and are delivered to lysosomes for degradation. Besides basal autophagy, which constantly degrades cellular material, the pathway is highly responsive to several stress conditions. However, the exact protein content and phospholipid composition of autophagosomes under changing autophagy conditions remain elusive so far. Here, we introduce a FACS-based approach for isolation of native unmanipulated autophagosomes and ensure the quality of the preparations. Employing quantitative proteomics and phospholip…
Sigma-1 Receptor Activation Induces Autophagy and Increases Proteostasis Capacity In Vitro and In Vivo
Dysfunction of autophagy and disturbed protein homeostasis are linked to the pathogenesis of human neurodegenerative diseases and the modulation of autophagy as the protein clearance process has become one key pharmacological target. Due to the role of sigma-1 receptors (Sig-1R) in learning and memory, and the described pleiotropic neuroprotective effects in various experimental paradigms, Sig-1R activation is recognized as one potential approach for prevention and therapy of neurodegeneration and, interestingly, in amyotrophic lateral sclerosis associated with mutated Sig-1R, autophagy is disturbed. Here we analyzed the effects of tetrahydro-N,N-dimethyl-2,2-diphenyl-3-furanmethanamine hyd…
On-demand autophagic network adaptations upon limited lipid availability
The de novo synthesis of autophagic vesicles is strongly dependent on sufficient lipid supply. Recently, the RAB GTPase RAB18 was shown to affect autophagy by mediating fatty acid release from lipid droplets, which are lipid sources for autophagosome formation. The stable loss of RAB18 interfered with fatty acid release from the lipid reservoirs and provoked autophagy network adaptations aiming to maintain autophagic activity under lipid limiting conditions.
BAG2 Interferes with CHIP-Mediated Ubiquitination of HSP72
The maintenance of cellular proteostasis is dependent on molecular chaperones and protein degradation pathways. Chaperones facilitate protein folding, maturation, and degradation, and the particular fate of a misfolded protein is determined by the interaction of chaperones with co-chaperones. The co-factor CHIP (C-terminus of HSP70-inteacting protein, STUB1) ubiquitinates chaperone substrates and directs proteins to the cellular degradation systems. The activity of CHIP is regulated by two co-chaperones, BAG2 and HSPBP1, which are potent inhibitors of the E3 ubiquitin ligase activity. Here, we examined the functional correlation of HSP72, CHIP, and BAG2, employing human primary fibroblasts.…
Down-regulation of Endogenous Amyloid Precursor Protein Processing due to Cellular Aging
Processing of amyloid precursor protein (APP) is a well acknowledged central pathogenic mechanism in Alzheimer disease. However, influences of age-associated cellular alterations on the biochemistry of APP processing have not been studied in molecular detail so far. Here, we report that processing of endogenous APP is down-regulated during the aging of normal human fibroblasts (IMR-90). The generation of intracellular APP cleavage products C99, C83, and AICD gradually declines with increasing life span and is accompanied by a reduced secretion of soluble APP (sAPP) and sAPPalpha. Further, the maturation of APP was reduced in senescent cells, which has been shown to be directly mediated by a…
The integration of autophagy and cellular trafficking pathways via RAB GAPs.
Macroautophagy is a conserved degradative pathway in which a double-membrane compartment sequesters cytoplasmic cargo and delivers the contents to lysosomes for degradation. Efficient formation and maturation of autophagic vesicles, so-called phagophores that are precursors to autophagosomes, and their subsequent trafficking to lysosomes relies on the activity of small RAB GTPases, which are essential factors of cellular vesicle transport systems. The activity of RAB GTPases is coordinated by upstream factors, which include guanine nucleotide exchange factors (RAB GEFs) and RAB GTPase activating proteins (RAB GAPs). A role in macroautophagy regulation for different TRE2-BUB2-CDC16 (TBC) dom…
Phenothiazines interfere with dopaminergic neurodegeneration in Caenorhabditis elegans models of Parkinson's disease
Oxidative stress is involved in the pathogenesis of various neurodegenerative disorders, conventional antioxidant strategies have yet been of limited success. We have employed transgenic Caenorhabditis elegans expressing DsRed2 in dopaminergic neurons and CFP pan-neuronally, to characterize in larval and adult animals the effects of rotenone and 1-methyl-4-phenyl-pyridinium (MPP(+)) on the dopaminergic system. Investigating the antioxidant phenothiazine and different derived antipsychotic drugs, it was found that free phenothiazine exerted strong neuroprotection at the cellular level and resulted in a better performance in behavioral assays, whereas apomorphine and other dopamine agonists o…
The deubiquitinase USP11 is a versatile and conserved regulator of autophagy
Autophagy is a major cellular quality control system responsible for the degradation of proteins and organelles in response to stress and damage to maintain homeostasis. Ubiquitination of autophagy-related proteins or regulatory components is important for the precise control of autophagy pathways. Here, we show that the deubiquitinase ubiquitin-specific protease 11 (USP11) restricts autophagy and that KO of USP11 in mammalian cells results in elevated autophagic flux. We also demonstrate that depletion of the USP11 homolog H34C03.2 in Caenorhabditis elegans triggers hyperactivation of autophagy and protects the animals against human amyloid-β peptide 42 aggregation-induced paralysis. USP11…
Increased AICD generation does not result in increased nuclear translocation or activation of target gene transcription.
A sequence of amyloid precursor protein (APP) cleavages culminates in the sequential release of the APP intracellular domain (AICD) and the amyloid beta peptide (Abeta) and/or p3 fragment. One of the environmental factors favouring the accumulation of AICD appears to be a rise in intracellular pH. Here we further identified the metabolism and subcellular localization of artificially expressed constructs under such conditions. We also co-examined the mechanistic lead up to the AICD accumulation and explored possible significances for its increased expression. We found that most of the AICD generated under pH neutralized conditions is likely cleaved from C83. While the AICD surplus was unable…
Novel Modulators of Proteostasis: RNAi Screen of Chromosome I in a Heat Stress Paradigm in C. elegans
Proteostasis is of vital importance for cellular function and it is challenged upon exposure to acute or chronic insults during neurodegeneration and aging. The proteostasis network is relevant for the maintenance of proteome integrity and mainly comprises molecular chaperones and two degradation pathways, namely, autophagy and the ubiquitin proteasome system. This network is characterized by an impressive functional interrelation and complexity, and occasionally novel factors are discovered that modulate proteostasis. Here, we present an RNAi screen in C. elegans, which aimed to identify modulators of proteostasis in a heat stress paradigm. The screen comprised genes that are located on ch…
Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)
Seuls les 100 premiers auteurs dont les auteurs INRA ont été entrés dans la notice. La liste complète des auteurs et de leurs affiliations est accessible sur la publication.; International audience; In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues…
The unsolved relationship of brain aging and late-onset Alzheimer disease.
Late-onset Alzheimer disease is the most common form of dementia and is strongly associated with age. Today, around 24 million people suffer from dementia and with aging of industrial populations this number will significantly increase throughout the next decades. An effective therapy that successfully decelerates or prevents the progressive neurodegeneration does not exist. Histopathologically Alzheimer disease is characterized by extensive extracellular amyloid beta (Abeta) plaques, intracellular neurofibrillary tangles (NFTs), synaptic loss and neuronal cell death in distinct brain regions. The molecular correlation of Abeta or NFTs and development of late-onset Alzheimer disease needs f…
RAB3GAP1 and RAB3GAP2 modulate basal and rapamycin-induced autophagy
Macroautophagy is a degradative pathway that sequesters and transports cytosolic cargo in autophagosomes to lysosomes, and its deterioration affects intracellular proteostasis. Membrane dynamics accompanying autophagy are mostly elusive and depend on trafficking processes. RAB GTPase activating proteins (RABGAPs) are important factors for the coordination of cellular vesicle transport systems, and several TBC (TRE2-BUB2-CDC16) domain-containing RABGAPs are associated with autophagy. Employing C. elegans and human primary fibroblasts, we show that RAB3GAP1 and RAB3GAP2, which are components of the TBC domain-free RAB3GAP complex, influence protein aggregation and affect autophagy at basal an…
Special Issue on “Proteostasis and Autophagy”
Autophagy is a highly conserved eukaryotic pathway responsible for the lysosomal degradation (and subsequent recycling) of cellular components such as proteins, protein aggregates, and a growing number of organelles or cellular compartments [...]
Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) 1
Contains fulltext : 232759.pdf (Publisher’s version ) (Closed access) In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to…
Autophagy
In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide…
RAB18 Loss Interferes With Lipid Droplet Catabolism and Provokes Autophagy Network Adaptations
Autophagy is dependent on appropriate lipid supply for autophagosome formation. The regulation of lipid acquisition and the autophagy network response to lipid-limiting conditions are mostly elusive. Here, we show that the knockout of the RAB GTPase RAB18 interferes with lipid droplet catabolism, causing an impaired fatty acid release. The resulting reduced lipid-droplet-derived lipid availability influences autophagy and provokes adaptive modifications of the autophagy network. These adjustments include increased expression and phosphorylation of ATG2B as well as augmented formation of the ATG12-ATG5 conjugate. Moreover, ATG9A shows an enhanced phosphorylation at amino acid residues tyrosi…
Erratum
Author(s): Klionsky, DJ; Abdelmohsen, K; Abe, A; Abedin, MJ; Abeliovich, H; Arozena, AA; Adachi, H; Adams, CM; Adams, PD; Adeli, K; Adhihetty, PJ; Adler, SG; Agam, G; Agarwal, R; Aghi, MK; Agnello, M; Agostinis, P; Aguilar, PV; Aguirre-Ghiso, J; Airoldi, EM; Ait-Si-Ali, S; Akematsu, T; Akporiaye, ET; Al-Rubeai, M; Albaiceta, GM; Albanese, C; Albani, D; Albert, ML; Aldudo, J; Algul, H; Alirezaei, M; Alloza, I; Almasan, A; Almonte-Beceril, M; Alnemri, ES; Alonso, C; Altan-Bonnet, N; Altieri, DC; Alvarez, S; Alvarez-Erviti, L; Alves, S; Amadoro, G; Amano, A; Amantini, C; Ambrosio, S; Amelio, I; Amer, AO; Amessou, M; Amon, A; An, Z; Anania, FA; Andersen, SU; Andley, UP; Andreadi, CK; Andrieu-Ab…
RAB18 impacts autophagy via lipid droplet-derived lipid transfer and is rescued by ATG9A
AbstractAutophagy is a lysosomal degradation pathway that mediates protein and organelle turnover and maintains cellular homeostasis. Autophagosomes transport cargo to lysosomes and their formation is dependent on an appropriate lipid supply. Here, we show that the knockout of the RAB GTPase RAB18 interferes with lipid droplet (LD) metabolism, resulting in an impaired fatty acid mobilization. The reduced LD-derived lipid availability influences autophagy and provokes adaptive modifications of the autophagy network, which include increased ATG2B expression and ATG12-ATG5 conjugate formation as well as enhanced ATG2B and ATG9A phosphorylation. Phosphorylation of ATG9A directs this transmembra…
The RAB GTPase RAB18 modulates macroautophagy and proteostasis
Macroautophagy is a conserved degradative pathway and its deterioration is linked to disturbances in cellular proteostasis and multiple diseases. Here, we show that the RAB GTPase RAB18 modulates autophagy in primary human fibroblasts. The knockdown of RAB18 results in a decreased autophagic activity, while its overexpression enhances the degradative pathway. Importantly, this function of RAB18 is dependent on RAB3GAP1 and RAB3GAP2, which might act as RAB GEFs and stimulate the activity of the RAB GTPase. Moreover, the knockdown of RAB18 deteriorates proteostasis and results in the intracellular accumulation of ubiquitinated degradation-prone proteins. Thus, the RAB GTPase RAB18 is a positi…
RAB3GAP1 and RAB3GAP2 modulate basal and rapamycin-induced autophagy
Macroautophagy is a degradative pathway that sequesters and transports cytosolic cargo in autophagosomes to lysosomes, and its deterioration affects intracellular proteostasis. Membrane dynamics accompanying autophagy are mostly elusive and depend on trafficking processes. RAB GTPase-activating proteins (RABGAPs) are important factors for the coordination of cellular vesicle transport systems, and several TBC (TRE2-BUB2-CDC16) domain-containing RABGAPs are associated with autophagy. Employing C. elegans and human primary fibroblasts, we show that RAB3GAP1 and RAB3GAP2, which are components of the TBC domain-free RAB3GAP complex, influence protein aggregation and affect autophagy at basal an…