0000000001147939
AUTHOR
Pascual Sanz
Histone carbonylation occurs in proliferating cells
12 páginas, 10 figuras (que no es encuentran en este documento, se pueden ver en: http://www.sciencedirect.com/science/article/pii/S0891584912000664)
Oxidative Stress, a Crossroad Between Rare Diseases and Neurodegeneration
Oxidative stress is an imbalance between production and accumulation of oxygen reactive species and/or reactive nitrogen species in cells and tissues, and the capacity of detoxifying these products, using enzymatic and non-enzymatic components, such as glutathione. Oxidative stress plays roles in several pathological processes in the nervous system, such as neurotoxicity, neuroinflammation, ischemic stroke, and neurodegeneration. The concepts of oxidative stress and rare diseases were formulated in the eighties, and since then, the link between them has not stopped growing. The present review aims to expand knowledge in the pathological processes associated with oxidative stress underlying …
Ubiquitin conjugating enzyme E2-N and sequestosome-1 (p62) are components of the ubiquitination process mediated by the malin-laforin E3-ubiquitin ligase complex
11 páginas, 9 figuras.
Lafora disease fibroblasts exemplify the molecular interdependence between thioredoxin 1 and the proteasome in mammalian cells
13 páginas, 8 figuras (que no aparecen en este documento, se pueden consultar en: http://www.sciencedirect.com/science/article/pii/S0891584913003274#ec0005)
Convergence of the target of rapamycin and the Snf1 protein kinase pathways in the regulation of the subcellular localization of Msn2, a transcriptional activator of STRE (Stress Response Element)-regulated genes.
The subcellular localization of Msn2, a transcriptional activator of STRE (stress response element)-regulated genes, is modulated by carbon source availability. In cells growing in glucose, Msn2 is located mainly in the cytosol, whereas in carbon source-starved cells, Msn2 is located largely inside the nucleus. However, in cells lacking Reg1 (the regulatory subunit of the Reg1/Glc7 protein phosphatase complex), the regulation of subcellular distribution is absent, Msn2 being constitutively present in the cytosol. The localization defect in these mutants is specific for carbon starvation stress, and it is because of the presence of an abnormally active Snf1 protein kinase that inhibits the n…
Endocytosis of the glutamate transporter 1 is regulated by laforin and malin: Implications in Lafora disease.
Postprint 36 páginas, 7 figuras
Oxidative stress, a new hallmark in the pathophysiology of Lafora progressive myoclonus epilepsy
12 páginas, 4 figuras, 1 tabla
Increased oxidative stress and impaired antioxidant response in Lafora disease.
15 páginas, 10 figuras
Synergistic activation of AMPK prevents from polyglutamine-inducedtoxicity inCaenorhabditis elegans
11 páginas, 4 figuras. Supplementary material related to this article can be found, in the online version, at doi: https://doi.org/10.1016/j.phrs.2020.105105.
Studying Closed Hydrodynamic Models of "In Vivo" DNA Perfusion in Pig Liver for Gene Therapy Translation to Humans.
17 páginas, 6 figuras. En la versión online contiene 3 figuras y 1 tabla en información suplemetaria
An Attachment-Independent Biochemical Timer of the Spindle Assembly Checkpoint.
The spindle assembly checkpoint (SAC) generates a diffusible protein complex that prevents anaphase until all chromosomes are properly attached to spindle microtubules. A key step in SAC initiation is the recruitment of MAD1 to kinetochores, which is generally thought to be governed by the microtubule-kinetochore (MT-KT) attachment status. However, we demonstrate that the recruitment of MAD1 via BUB1, a conserved kinetochore receptor, is not affected by MT-KT interactions in human cells. Instead, BUB1:MAD1 interaction depends on BUB1 phosphorylation, which is controlled by a biochemical timer that integrates counteracting kinase and phosphatase effects on BUB1 into a pulse-generating incohe…
Assessing the biological activity of the glucan phosphatase laforin
Glucan phosphatases are a recently discovered family of enzymes that dephosphorylate either starch or glycogen and are essential for proper starch metabolism in plants and glycogen metabolism in humans. Mutations in the gene encoding the only human glucan phosphatase, laforin, result in the fatal, neurodegenerative, epilepsy known as Lafora disease. Here, we describe phosphatase assays to assess both generic laforin phosphatase activity and laforin's unique glycogen phosphatase activity.
Role of glycosylation in the incorporation of intrinsic mannoproteins into cell walls of Saccharomyces cerevisiae.
Cell wall mannoproteins from Saccharomyces cerevisiae are completely or partially incorporated into their final location when N-glycosylation is inhibited by tunicamycin. These include a 90–100 kDa species still containing O-linked oligomannose chains, derived from a N-glycosylated material larger than 120 kDa; and a 30.5 kDa peptide lacking mannose residues, derived from a 33 kDa species. For both species, the growth temperature influences the level of incorporation of the non N-glycosylated molecules. Secretion of the peptides lacking N-linked saccharide chains follows the route defined by sec mutants.
Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) 1
Contains fulltext : 232759.pdf (Publisher’s version ) (Closed access) In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to…
Autophagy
In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide…