0000000001150217

AUTHOR

Xu Feng

showing 4 related works from this author

Lattice QCD calculation of the electroweak box diagrams for the kaon semileptonic decays

2021

We present a lattice QCD calculation of the axial $\gamma W$-box diagrams relevant for the kaon semileptonic decays. We utilize a recently proposed method, which connects the electroweak radiative corrections in Sirlin's representation to that in chiral perturbation theory. It allows us to use the axial $\gamma W$-box correction in the SU(3) limit to obtain the low energy constants for chiral perturbation theory. From first principles our results confirm the previously used low energy constants provided by the minimal resonance model with a significant reduction in uncertainties.

PhysicsParticle physicsChiral perturbation theory010308 nuclear & particles physicsHigh Energy Physics::LatticeElectroweak interactionHigh Energy Physics::PhenomenologyHigh Energy Physics - Lattice (hep-lat)FOS: Physical sciencesLattice QCD01 natural sciencesResonance (particle physics)High Energy Physics - ExperimentReduction (complexity)High Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesRadiative transferHigh Energy Physics::ExperimentLimit (mathematics)010306 general physicsRepresentation (mathematics)Physical Review
researchProduct

First-Principles Calculation of Electroweak Box Diagrams from Lattice QCD.

2020

We present the first realistic lattice QCD calculation of the $\gamma W$-box diagrams relevant for beta decays. The nonperturbative low-momentum integral of the $\gamma W$ loop is calculated using a lattice QCD simulation, complemented by the perturbative QCD result at high momenta. Using the pion semileptonic decay as an example, we demonstrate the feasibility of the method. By using domain wall fermions at the physical pion mass with multiple lattice spacings and volumes, we obtain the axial $\gamma W$-box correction to the semileptonic pion decay, $\Box_{\gamma W}^{VA}\big|_{\pi}=2.830(11)_{\mathrm{stat}}(26)_{\mathrm{sys}}\times10^{-3}$, with the total uncertainty controlled at the leve…

Semileptonic decayParticle physicsAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::LatticeFOS: Physical sciencesGeneral Physics and Astronomy53001 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticePionLattice (order)0103 physical sciencesddc:530NeutronNuclear Experiment010306 general physicsPhysicsHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyElectroweak interactionPerturbative QCDFermionLattice QCDHigh Energy Physics - PhenomenologyHigh Energy Physics::ExperimentPhysical review letters
researchProduct

New method for calculating electromagnetic effects in semileptonic beta-decays of mesons

2020

We construct several classes of hadronic matrix elements and relate them to the low-energy constants in Chiral Perturbation Theory that describe the electromagnetic effects in the semileptonic beta decay of the pion and the kaon. We propose to calculate them using lattice QCD, and argue that such a calculation will make an immediate impact to a number of interesting topics at the precision frontier, including the outstanding anomalies in $|V_{us}|$ and the top-row Cabibbo-Kobayashi-Maskawa matrix unitarity.

Nuclear and High Energy PhysicsParticle physicsChiral perturbation theoryelectromagnetic [effect]MesonNuclear TheoryHigh Energy Physics::LatticeHadronFOS: Physical scienceschiral [perturbation theory]anomalyLattice QCD01 natural sciences530High Energy Physics - ExperimentNuclear Theory (nucl-th)Matrix (mathematics)High Energy Physics - Experiment (hep-ex)Kaon PhysicsPionHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Lattice0103 physical sciencesBeta (velocity)lcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530Precision QEDNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentPhysicsUnitarity010308 nuclear & particles physicsComputer Science::Information RetrievalHigh Energy Physics - Lattice (hep-lat)High Energy Physics::Phenomenologysemileptonic decay [meson]lattice field theorysemileptonic decay [pi]Lattice QCDHigh Energy Physics - PhenomenologyChiral Lagrangianslcsh:QC770-798High Energy Physics::Experimentunitarity [CKM matrix]
researchProduct

Joint lattice QCD–dispersion theory analysis confirms the quark-mixing top-row unitarity deficit

2020

Recently, the first ever lattice computation of the $\gamma W$-box radiative correction to the rate of the semileptonic pion decay allowed for a reduction of the theory uncertainty of that rate by a factor of $\sim3$. A recent dispersion evaluation of the $\gamma W$-box correction on the neutron also led to a significant reduction of the theory uncertainty, but shifted the value of $V_{ud}$ extracted from the neutron and superallowed nuclear $\beta$ decay, resulting in a deficit of the CKM unitarity in the top row. A direct lattice computation of the $\gamma W$-box correction for the neutron decay would provide an independent cross-check for this result but is very challenging. Before those…

QuarkParticle physicsNuclear TheoryComputationAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesComputer Science::Digital Libraries01 natural sciences530High Energy Physics - ExperimentNuclear Theory (nucl-th)High Energy Physics - Experiment (hep-ex)PionHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeLattice (order)0103 physical sciencesRadiative transferddc:530NeutronNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentPhysicsUnitarity010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)Lattice QCDHigh Energy Physics - PhenomenologyHigh Energy Physics::ExperimentPhysical Review D
researchProduct