6533b872fe1ef96bd12d3a55

RESEARCH PRODUCT

Joint lattice QCD–dispersion theory analysis confirms the quark-mixing top-row unitarity deficit

Mikhail GorchteinXu FengLuchang JinChien Yeah Seng

subject

QuarkParticle physicsNuclear TheoryComputationAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesComputer Science::Digital Libraries01 natural sciences530High Energy Physics - ExperimentNuclear Theory (nucl-th)High Energy Physics - Experiment (hep-ex)PionHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeLattice (order)0103 physical sciencesRadiative transferddc:530NeutronNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentPhysicsUnitarity010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)Lattice QCDHigh Energy Physics - PhenomenologyHigh Energy Physics::Experiment

description

Recently, the first ever lattice computation of the $\gamma W$-box radiative correction to the rate of the semileptonic pion decay allowed for a reduction of the theory uncertainty of that rate by a factor of $\sim3$. A recent dispersion evaluation of the $\gamma W$-box correction on the neutron also led to a significant reduction of the theory uncertainty, but shifted the value of $V_{ud}$ extracted from the neutron and superallowed nuclear $\beta$ decay, resulting in a deficit of the CKM unitarity in the top row. A direct lattice computation of the $\gamma W$-box correction for the neutron decay would provide an independent cross-check for this result but is very challenging. Before those challenges are overcome, we propose a hybrid analysis, converting the lattice calculation on the pion to that on the neutron by a combination of dispersion theory and phenomenological input. The new prediction for the universal radiative correction to free and bound neutron $\beta$-decay reads $\Delta_R^V=0.02477(24)$, in excellent agreement with the dispersion theory result $\Delta_R^V=0.02467(22)$. Combining with other relevant information, the top-row CKM unitarity deficit persists.

10.1103/physrevd.101.111301http://dx.doi.org/10.1103/physrevd.101.111301