0000000001155071

AUTHOR

Sissel Tind Kristensen

showing 11 related works from this author

Improved Temperature Coefficient Modeling through the Recombination Parameter $\gamma$

2020

This study presents an injection dependent numerical model relating Shocldey-Read-Hall defect parameters in crystalline silicon with the recombination parameter $\gamma$ . We demonstrate how the model can be used to predict $\gamma$ for various single level defects. Additionally, we show that $\gamma$ can be significantly influenced by the injection level, in contrast to what is commonly assumed. The injection dependence is found to correlate with the temperature sensitivity of the Shocldey-Read-Hall lifetime. Finally, we demonstrate that the model can be used to predict the temperature coefficient of the open circuit voltage without the use of a temperature dependent measurement, enabling …

Materials scienceSiliconOpen-circuit voltageSemiconductor device modelingchemistry.chemical_element02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesTemperature measurement0104 chemical sciencesComputational physicschemistryCrystalline siliconSensitivity (control systems)0210 nano-technologyTemperature coefficientRecombination2020 47th IEEE Photovoltaic Specialists Conference (PVSC)
researchProduct

A Novel Method for Characterizing Temperature Sensitivity of Silicon Wafers and Cells

2019

In this paper, we present a novel method to obtain temperature dependent lifetime and implied-open-circuit voltage (iV OC ) images of silicon wafers and solar cells. First, the method is validated by comparing the obtained values with global values acquired from lifetime measurements (for wafers) and current-voltage measurements (for cells). The method is then extended to acquire spatially resolved images of iV OC temperature coefficients of silicon wafers and cells. Potential applications of the proposed method are demonstrated by investigating the temperature coefficients of various regions across multi-crystalline silicon wafers and cells from different heights of two bricks with differe…

010302 applied physicsBrickTemperature sensitivityMaterials sciencebusiness.industry02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesReduced propertiesImpurity0103 physical sciencesOptoelectronicsWaferSensitivity (control systems)Dislocation0210 nano-technologybusinessVoltage2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)
researchProduct

A high-accuracy calibration method for temperature dependent photoluminescence imaging

2019

This work demonstrates a novel technique for calibrating temperature dependent photoluminescence (PL) images of silicon wafers with high accuracy. The PL signal is calibrated using a heat-controlled photoconductance (PC) stage integrated into the PL imaging system. The PC signal is measured in true steady state condition and used to determine the calibration constant under the same temperature and illumination as the PL image, thus providing a high-precision calibration. This results in a robust method for imaging of important physical parameters, such as the minority carrier lifetime and the implied voltage at different temperatures, as well as the temperature coefficients and the recombin…

Work (thermodynamics)Steady state (electronics)PhotoluminescenceMaterials scienceVDP::Matematikk og Naturvitenskap: 400::Fysikk: 430business.industryCalibrationOptoelectronicsWaferCarrier lifetimebusinessSignalVoltage
researchProduct

Photoluminescence-Based Spatially Resolved Temperature Coefficient Maps of Silicon Wafers and Solar Cells

2020

In this article, we present a method to obtain implied open-circuit voltage images of silicon wafers and cells at different temperatures. The proposed method is then demonstrated by investigating the temperature coefficients of various regions across multicrystalline silicon wafers and cells from different heights of two bricks with different dislocation densities. Interestingly, both low and high temperature coefficients are found in dislocated regions on the wafers. A large spread of temperature coefficient is observed at regions with similar performance at 298 K. Reduced temperature sensitivity is found to be correlated with the increasing brick height and is exhibited by both wafers and…

010302 applied physicsBrickPhotoluminescenceMaterials sciencebusiness.industry02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsReduced properties0103 physical sciencesOptoelectronicsDegradation (geology)WaferElectrical and Electronic EngineeringDislocation0210 nano-technologybusinessTemperature coefficientImage resolutionIEEE Journal of Photovoltaics
researchProduct

Assessment of a New Analytical Expression for the Maximum-Power Point Voltage with Series Resistance

2021

This work compares a recently developed analytical expression for the maximum-power point voltage with experimental data, to test its usability for crystalline silicon solar cells. The experimental data covers measurements from 18 multicrystalline silicon solar cells with different bulk resistivities and cell architectures. We show that the expression is able to predict the maximum power obtainable by the measured cells with relative discrepancies below 1%. Additionally, we compare the accuracy of this new expression with two already existing models.

Materials scienceSiliconchemistryMaximum power principleEquivalent series resistancechemistry.chemical_elementExperimental dataPoint (geometry)Crystalline siliconExpression (mathematics)Computational physicsVoltage2021 IEEE 48th Photovoltaic Specialists Conference (PVSC)
researchProduct

How Gettering Affects the Temperature Sensitivity of the Implied Open Circuit Voltage of Multicrystalline Silicon Wafers

2019

The temperature sensitivity of the open circuit voltage of a solar cell is mainly driven by changes in the intrinsic carrier concentration, but also by the temperature dependence of the limiting recombination mechanisms in the cell. This paper investigates the influence of recombination through metallic impurities on the temperature sensitivity of multicrystalline silicon wafers. Spatially resolved temperature dependent analysis is performed to evaluate the temperature sensitivity of wafers from different brick positions before and after being subjected to phosphorus diffusion gettering. Local spatial analysis is performed on intra-grain areas, dislocation clusters and grain boundaries. Lar…

010302 applied physicsMaterials scienceOpen-circuit voltagebusiness.industry02 engineering and technology021001 nanoscience & nanotechnology01 natural scienceslaw.inventionGetterlaw0103 physical sciencesSolar cellOptoelectronicsGrain boundaryWaferSensitivity (control systems)Dislocation0210 nano-technologybusinessRecombination2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)
researchProduct

Temperature Coefficients of Crystal Defects in Multicrystalline Silicon Wafers

2020

This article investigates the influence of crystallographic defects on the temperature sensitivity of multicrystalline silicon wafers. The thermal characteristics of the implied open-circuit voltage is assessed since it determines most of the total temperature sensitivity of the material. Spatially resolved temperature-dependent analysis is performed on wafers from various brick positions; intragrain regions, grain boundaries, and dislocation clusters are examined. The crystal regions are studied before and after subjecting the wafers to phosphorus gettering, aiming to alter the metallic impurity concentration in various regions across the wafers. Most intragrain regions and grain boundarie…

010302 applied physicsMaterials scienceCondensed matter physics02 engineering and technologyAtmospheric temperature range021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesCrystallographic defectElectronic Optical and Magnetic MaterialsCrystalGetterImpurity0103 physical sciencesWaferGrain boundaryElectrical and Electronic EngineeringDislocation0210 nano-technologyIEEE Journal of Photovoltaics
researchProduct

Temperature Coefficients of Solar Cell Parameters at Maximum Power Point

2020

Analytical expressions for the temperature coefficients of the maximum power point voltage and current are presented. The temperature coefficients are calculated assuming the bandgap to be a linear function of the temperature and accounting for energy losses of non-radiative nature. The latter are introduced in the model through the External Radiative Efficiency. The so-called $\gamma$ parameter, which has been shown to account for the thermal sensitivity of all mechanisms determining the open-circuit voltage, appears to also play a role in the temperature coefficient of the maximum power point voltage and current. Numerical results and a comparison with experimental measurements are also p…

010302 applied physicsPhysicsMaximum power principle02 engineering and technologyMechanics021001 nanoscience & nanotechnology01 natural sciencesTemperature measurementLinear functionlaw.inventionlaw0103 physical sciencesThermalSolar cellSensitivity (control systems)0210 nano-technologyTemperature coefficientVoltage2020 47th IEEE Photovoltaic Specialists Conference (PVSC)
researchProduct

Temperature Sensitivity of Multicrystalline Silicon Solar Cells

2019

This paper presents an experimental investigation of the temperature coefficients of multicrystalline silicon solar cells. The aim was to determine if some cell parameters can affect positively the temperature sensitivity without detrimental impact on the efficiency. Commercial solar cells with different bulk resistivities, compensation levels, and cell architectures have been studied. We report that the base net doping, the location of the solar cell along the brick and the cell architecture have significant impacts on the temperature coefficients. Moreover, we show how the change in recombination mechanisms along the ingot height affects the temperature coefficients. The compensation leve…

Materials sciencePassivationSiliconchemistry.chemical_element02 engineering and technology010402 general chemistry01 natural scienceslaw.inventionlawAluminiumSolar cellElectrical and Electronic EngineeringIngotCommon emitterbusiness.industryDopingfood and beverages021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesElectronic Optical and Magnetic MaterialschemistryOptoelectronics0210 nano-technologybusinessVoltageIEEE Journal of Photovoltaics
researchProduct

Analytical Modeling of the Temperature Sensitivity of the Maximum Power Point of Solar Cells

2022

Author's accepted manuscript Abstract—This article presents new analytical expressions for the temperature coefficients of the voltage, current, and power of a solar cell at its maximum power point MPP). A new analytical expression of the temperature coefficient of the fill factor is also derived. The new expressions are written as functions of photovoltaic (PV) metrics that can be obtained from i-V measurements. Nonideal diode behavior is partially accounted for through a temperature dependent ideality factor. The recombination parameter γ, which has been shown to account for the thermal sensitivity of all mechanisms determining the open-circuit voltage, appears to play a role also for the…

VDP::Teknologi: 500Electrical and Electronic EngineeringCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsIEEE Journal of Photovoltaics
researchProduct

Temperature coefficients and crystal defects in multicrystalline silicon solar cells

2020

The paper VIII is not published yet. The conversion efficiency of a photovoltaic device is strongly dependent on the operating temperature. For most devices, the efficiency, and hence the power production, decreases with increasing temperature due to fundamental, material, and process-related factors. Therefore, understanding the thermal behavior of photovoltaic devices is essential to accurately forecast the power production of photovoltaic installations and to optimize devices for different climatic conditions. The thermal behavior of crystalline silicon-based devices is of special interest because of the importance of the technology for industrial applications. This thesis expands the kn…

VDP::Teknologi: 500
researchProduct