0000000001158193

AUTHOR

Antti Luoto

showing 6 related works from this author

On first exit times and their means for Brownian bridges

2017

For a Brownian bridge from $0$ to $y$ we prove that the mean of the first exit time from interval $(-h,h), \,\, h>0,$ behaves as $O(h^2)$ when $h \downarrow 0.$ Similar behavior is seen to hold also for the 3-dimensional Bessel bridge. For Brownian bridge and 3-dimensional Bessel bridge this mean of the first exit time has a puzzling representation in terms of the Kolmogorov distribution. The result regarding the Brownian bridge is applied to prove in detail an estimate needed by Walsh to determine the convergence of the binomial tree scheme for European options.

Statistics and ProbabilityBessel processGeneral Mathematics010102 general mathematicsMathematical analysisProbability (math.PR)Brownian bridge01 natural sciencesBridge (interpersonal)010104 statistics & probabilitysymbols.namesakeDistribution (mathematics)Diffusion processMathematics::ProbabilitysymbolsFOS: MathematicsBinomial options pricing model0101 mathematicsStatistics Probability and UncertaintyMathematics - ProbabilityBessel functionBrownian motionMathematics
researchProduct

Time-dependent weak rate of convergence for functions of generalized bounded variation

2016

Let $W$ denote the Brownian motion. For any exponentially bounded Borel function $g$ the function $u$ defined by $u(t,x)= \mathbb{E}[g(x{+}\sigma W_{T-t})]$ is the stochastic solution of the backward heat equation with terminal condition $g$. Let $u^n(t,x)$ denote the corresponding approximation generated by a simple symmetric random walk with time steps $2T/n$ and space steps $\pm \sigma \sqrt{T/n}$ where $\sigma > 0$. For quite irregular terminal conditions $g$ (bounded variation on compact intervals, locally H\"older continuous) the rate of convergence of $u^n(t,x)$ to $u(t,x)$ is considered, and also the behavior of the error $u^n(t,x)-u(t,x)$ as $t$ tends to $T$

Statistics and ProbabilityApproximation using simple random walkweak rate of convergence01 natural sciencesStochastic solution41A25 65M15 (Primary) 35K05 60G50 (Secondary)010104 statistics & probabilityExponential growthFOS: Mathematics0101 mathematicsBrownian motionstokastiset prosessitMathematicsosittaisdifferentiaaliyhtälötApplied MathematicsProbability (math.PR)010102 general mathematicsMathematical analysisfinite difference approximation of the heat equationFunction (mathematics)Rate of convergenceBounded functionBounded variationnumeerinen analyysiapproksimointiStatistics Probability and UncertaintyMathematics - ProbabilityStochastic Analysis and Applications
researchProduct

Random walk approximation of BSDEs with H{\"o}lder continuous terminal condition

2018

In this paper, we consider the random walk approximation of the solution of a Markovian BSDE whose terminal condition is a locally Hölder continuous function of the Brownian motion. We state the rate of the L2-convergence of the approximated solution to the true one. The proof relies in part on growth and smoothness properties of the solution u of the associated PDE. Here we improve existing results by showing some properties of the second derivative of u in space. peerReviewed

Statistics and Probabilitynumerical schemeHölder conditionSpace (mathematics)01 natural sciences010104 statistics & probabilityMathematics::Probability0101 mathematicsBrownian motionrandom walk approximationSecond derivativeMathematicsstokastiset prosessitSmoothness (probability theory)numeeriset menetelmät010102 general mathematicsMathematical analysisSpeed of convergenceBackward stochastic differential equationsFunction (mathematics)State (functional analysis)Random walk[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]random walk approxi-mationbackward stochastic differential equationsspeed of convergencespeed of convergence MSC codes : 65C30 60H35 60G50 65G99Mathematics - Probability
researchProduct

Mean square rate of convergence for random walk approximation of forward-backward SDEs

2020

AbstractLet (Y,Z) denote the solution to a forward-backward stochastic differential equation (FBSDE). If one constructs a random walk$B^n$from the underlying Brownian motionBby Skorokhod embedding, one can show$L_2$-convergence of the corresponding solutions$(Y^n,Z^n)$to$(Y, Z).$We estimate the rate of convergence based on smoothness properties, especially for a terminal condition function in$C^{2,\alpha}$. The proof relies on an approximative representation of$Z^n$and uses the concept of discretized Malliavin calculus. Moreover, we use growth and smoothness properties of the partial differential equation associated to the FBSDE, as well as of the finite difference equations associated to t…

Statistics and ProbabilityDiscretizationapproximation schemeMalliavin calculus01 natural sciences010104 statistics & probabilityconvergence rateMathematics::ProbabilityConvergence (routing)random walk approximation 2010 Mathematics Subject Classification: Primary 60H10FOS: MathematicsApplied mathematics0101 mathematicsBrownian motionrandom walk approximationMathematicsstokastiset prosessitSmoothness (probability theory)konvergenssiApplied Mathematics010102 general mathematicsProbability (math.PR)Backward stochastic differential equationsFunction (mathematics)Random walkfinite difference equation[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Rate of convergencebackward stochastic differential equations60G50 Secondary 60H3060H35approksimointidifferentiaaliyhtälötMathematics - Probability
researchProduct

Simuloidun jäähdytyksen suppenemislause

2013

Tämä pro gradu -tutkielma käsittelee simuloitu jäähdytys -nimisen kombinatorisen optimointimenetelmän teoriaa ja käytäntöä. Esimerkiksi kuvankäsittelyssä sovelletun algoritmin ideana on löytää annetulla joukolla määritellyn reaaliarvoisen energiafunktion globaali minimikohta sallimalla - ei pelkästään energiaa vähentäviä - vaan myös energiaa kasvattavia siirtymiä lähtöjoukon alkioiden välillä. Tilastolliseen fysiikkaan analogian omaavan, Gibbsin jakauman ominaisuuksiin pohjautuvan menetelm än matemaattisena perustana toimivat epähomogeeniset Markovin ketjut, joiden suppenemista tarkastellaan Dobrushinin kontraktiokerroinmenetelmän avulla. Simuloidun jäähdytyksen suppenemislause, joka takaa …

simuloitu jäähdytysMetropolis-algoritmioptimointialgoritmitGibbs-otantaepähomogeeninen Markovin ketjusatunnaiskenttä
researchProduct

Odottelua pysäkillä

2015

todennäköisyyslaskenta
researchProduct