0000000001158788
AUTHOR
Martin Vogel
Interior Eigenvalue Density of Jordan Matrices with Random Perturbations
International audience; We study the eigenvalue distribution of a large Jordan block subject to a small random Gaussian perturbation. A result by E. B. Davies and M. Hager shows that as the dimension of the matrix gets large, with probability close to 1, most of the eigenvalues are close to a circle.We study the expected eigenvalue density of the perturbed Jordan block in the interior of that circle and give a precise asymptotic description.; Nous étudions la distribution de valeurs propres d’un grand bloc de Jordan soumis à une petite perturbation gaussienne aléatoire. Un résultat de E. B. Davies et M. Hager montre que quand la dimension de la matrice devient grande, alors avec probabilité…
Interior eigenvalue density of large bi-diagonal matrices subject to random perturbations
We study the spectrum of large a bi-diagonal Toeplitz matrix subject to a Gaussian random perturbation with a small coupling constant. We obtain a precise asymptotic description of the average density of eigenvalues in the interior of the convex hull of the range symbol.
Toeplitz band matrices with small random perturbations
We study the spectra of $N\times N$ Toeplitz band matrices perturbed by small complex Gaussian random matrices, in the regime $N\gg 1$. We prove a probabilistic Weyl law, which provides an precise asymptotic formula for the number of eigenvalues in certain domains, which may depend on $N$, with probability sub-exponentially (in $N$) close to $1$. We show that most eigenvalues of the perturbed Toeplitz matrix are at a distance of at most $\mathcal{O}(N^{-1+\varepsilon})$, for all $\varepsilon >0$, to the curve in the complex plane given by the symbol of the unperturbed Toeplitz matrix.
Spectral properties of random non-self-adjoint operators
In this thesis we are interested in the spectral properties of random non-self-adjoint operators. Weare going to consider primarily the case of small random perturbations of the following two types of operators: 1. a class of non-self-adjoint h-differential operators Ph, introduced by M. Hager [32], in the semiclassical limit (h→0); 2. large Jordan block matrices as the dimension of the matrix gets large (N→∞). In case 1 we are going to consider the operator Ph subject to small Gaussian random perturbations. We let the perturbation coupling constant δ be e (-1/Ch) ≤ δ ⩽ h(k), for constants C, k > 0 suitably large. Let ∑ be the closure of the range of the principal symbol. Previous results o…