0000000001167581
AUTHOR
O. Tarvainen
Experimental evidence on photo-assisted O$^-$ ion production from Al$_2$O$_3$ cathode in cesium sputter negative ion source
The production of negative ions in cesium sputter ion sources is generally considered to be a pure surface process. It has been recently proposed that ion pair production could explain the higher-than-expected beam currents extracted from these ion sources, therefore opening the door for laser-assisted enhancement of the negative ion yield. We have tested this hypothesis by measuring the effect of various pulsed diode lasers on the O$^-$ beam current produced from Al$_2$O$_3$ cathode of a cesium sputter ion source. It is expected that the ion pair production of O$^-$ requires populating the 5d electronic states of neutral cesium, thus implying that the process should be provoked only with s…
Time Evolution of High-Energy Bremsstrahlung and Argon Ion Production in Electron Cyclotron Resonance Ion-Source Plasma
Bremsstrahlung radiation measurement is one of the most commonly used plasma-diagnostics methods. Most of the bremsstrahlung measurements with electron cyclotron resonance ion sources (ECRISs) have been performed in continuous-operation mode yielding information only on the steady-state bremsstrahlung emission. This paper describes results of bremsstrahlung and argon ion-current measurements with the JYFL 14-GHz ECRIS operated in a pulsed mode. The bremsstrahlung radiation was studied as a function of neutral-gas pressure and radio frequency power. The timescale of ECRIS bremsstrahlung production is compared to ion-production timescale for different charge states of argon for the first time…
Diagnostic techniques of minimum-B ECR ion source plasma instabilities.
The performance of a minimum-B Electron Cyclotron Resonance Ion Source (ECRIS) is traditionally quantified by measuring the beam current and quality of the extracted ion beams of different charge state ions. The stability of the extracted ion beam currents has drawn more attention recently as the technology is pushing its limits toward higher ion charge states and beam intensities. The stability of the extracted beam is often compromised by plasma instabilities manifesting themselves as rapid oscillations of the beam currents in millisecond scale. This paper focuses on practical aspects of diagnostics techniques of the instabilities, showcases examples of instability-related diagnostics sig…
Effect of electron cyclotron resonance ion source frequency tuning on ion beam intensity and quality at Department of Physics, University of Jyväskylä.
Ion beam intensity and quality have a crucial effect on the operation efficiency of the accelerator facilities. This paper presents the investigations on the ion beam intensity and quality after the mass separation performed with the Department of Physics, University of Jyvaskyla 14 GHz electron cyclotron resonance ion source by sweeping the microwave in the 14.05–14.13 GHz range. In many cases a clear variation in the ion beam intensity and quality as a function of the frequency was observed. The effect of frequency tuning increased with the charge state. In addition, clear changes in the beam structure seen with the beam viewer were observed. The results confirmed that frequency tuning ca…
Different dynamic regimes of stimulated electron-cyclotron emission from mirror-confined non-equilibrium plasma
Influence of axial mirror ratios on the kinetic instability threshold in electron cyclotron resonance ion source plasma
International audience; Electron Cyclotron Resonance (ECR) ion source plasmas are prone to kinetic instabilities. The onset of the instabilities manifests as emission of microwaves, bursts of electrons expelled from the plasma volume, and the collapse of the extracted highly charged ion (HCI) currents. Consequently, the instabilities limit the HCI performance of ECR ion sources by limiting the parameter space available for ion source optimization. Previous studies have shown that the transition from stable to unstable plasma regime is strongly influenced by the magnetic field structure, especially the minimum field value inside the magnetic trap (Bmin). This work focuses to study the role o…
Effect of Ion Escape Velocity and Conversion Surface Material on H- Production
According to generally accepted models surface production of negative ions depends on ion escape velocity and work function of the surface. We have conducted an experimental study addressing the role of the ion escape velocity on H− production. A converter‐type ion source at Los Alamos Neutron Science Center was employed for the experiment. The ion escape velocity was affected by varying the bias voltage of the converter electrode. It was observed that due to enhanced stripping of H− no direct gain of extracted beam current can be achieved by increasing the converter voltage. The conversion efficiency of H− was observed to vary with converter voltage and follow the existing theories in qual…
Observation of Poincar\'e-Andronov-Hopf bifurcation in cyclotron maser emission from plasma magnetic trap
We report the first experimental evidence of a controlled transition from the generation of periodic bursts of electromagnetic emission into continuous wave regime of a cyclotron maser formed in magnetically confined non-equilibrium plasmas. The kinetic cyclotron instability of the extraordinary wave of weakly inhomogeneous magnetized plasma is driven by the anisotropic electron population resulting from electron cyclotron plasma heating in MHD-stable minimum-B open magnetic trap.
Quasi-periodical kinetic instabilities in minimum-B confined plasma
We present the results of an experimental investigation of quasi-periodical kinetic instabilities exhibited by magnetically confined electron cyclotron resonance heated plasmas. The instabilities were detected by measuring plasma microwave emission, electron losses, and wall bremsstrahlung. The instabilities were found to be grouped into fast sequences of periodic plasma losses, separated by ∼100 µs between the bursts, followed by 1–10 ms quiescent periods before the next event. Increasing the plasma energy content by adjusting the plasma heating parameters, in particular the magnetic field strength, makes the instabilities more chaotic in the time domain. Statistical analysis reveals that …
Method for estimating charge breeder ECR ion source plasma parameters with short pulse 1+ injection
A new method for determining plasma parameters from beam current transients resulting from short pulse 1+ injection into a Charge Breeder Electron Cyclotron Resonance Ion Source (CB-ECRIS) has been developed. The proposed method relies on few assumptions, and yields the ionisation times $1/n_e\left\langle\sigma v\right\rangle^{\text{inz}}_{q\to q+1}$, charge exchange times $1/n_0\left\langle\sigma v\right\rangle^{\text{cx}}_{q\to q-1}$, the ion confinement times $\tau^q$, as well as the plasma energy contents $n_e\left\langle E_e\right\rangle$ and the plasma triple products $n_e \left\langle E_e\right\rangle \tau^q$. The method is based on fitting the current balance equation on the extract…
Electron cyclotron resonance ion source plasma chamber studies using a network analyzer as a loaded cavity probe
A method and first results utilizing a network analyzer as a loaded cavity probe to study the resonance properties of a plasma filled electron cyclotron resonance ion source (ECRIS) plasma chamber are presented. The loaded cavity measurements have been performed using a dual port technique, in which two separate waveguides were used simultaneously. One port was used to ignite and sustain the plasma with a microwave source operating around 11 GHz and the other was used to probe the cavity properties with the network analyzer using a frequency range around 14 GHz. The first results obtained with the JYFL 14 GHz ECRIS demonstrate that the presence of plasma has significant effects on the reson…
The role of rf-scattering in high-energy electron losses from minimum-B ECR ion source
The measurement of the axially lost electron energy distribution escaping from a minimum-B electron cyclotron resonance ion source in the range of 4-800 keV is reported. The experiments have revealed the existence of a hump at 150-300 keV energy, containing up to 15% of the lost electrons and carrying up to 30% of the measured energy losses. The mean energy of the hump is independent of the microwave power, frequency and neutral gas pressure but increases with the magnetic field strength, most importantly with the value of the minimum-B field. Experiments in pulsed operation mode have indicated the presence of the hump only when microwave power is applied, confirming that the origin of the …
Efficiency investigation of a negative hydrogen ion beam production with the use of the gasdynamic ECR plasma source
Negative hydrogen ion sources are of great demand in modern physics as injectors into accelerators and drivers for neutral beam injectors for fusion devices. It has been shown earlier that the use of the gasdynamic ECR discharge provides the opportunity to extract up to 80 mA/cm2 of negative ion current density. We studied experimentally the volumetric negative hydrogen ion production and vacuum ultraviolet emission in a gasdynamic ECR discharge. The high-density plasma was sustained by the pulsed 37 GHz / 100 kW gyrotron radiation in a magnetic configuration consisting of two consecutive simple mirror traps. The future prospects of the volumetric H– source based on the gasdynamic ECR disch…
The effects of beam line pressure on the beam quality of an electron cyclotron resonance ion source
The results of a series of measurements studying the possibility to use neutral gas feeding into the beam line as a way to improve the quality of the heavy ion beams produced with an electron cyclotron resonance ion source (ECRIS) are presented. Significant reduction of the beam spot size and emittance can be achieved with this method. The observed effects are presumably due to increased space charge compensation degree of the ion beam in the beam line section between the ion source and the analyzing magnet. This is the region where the neutral gas was injected. It is shown that the effects are independent of the ion source tuning. Transmission measurements through the beam line and K-130 c…
HIISI, New 18 GHZ ECRIS for the JYFL Accelerator Laboratory
At the end of 2013 the Academy of Finland granted an infrastructure funding for the JYFL Accelerator Laboratory in order to increase beam intensities for the international user community. The primary objective is to construct a new high performance ECR ion source, HIISI (Heavy Ion Ion Source Injector), for the K130 cyclotron. Using room temperature magnets the HIISI has been designed to produce about the same magnetic field configuration as the superconducting ECRIS SUSI at NSCL/MSU for 18 GHz operation. An innovative structure will be used to maximize the radial confinement and demagnetization safety margin of the permanent magnets. The sextupole magnet is separated and insulated from the …
A study of VUV emission and the extracted electron-ion ratio in hydrogen and deuterium plasmas of a filament-driven H−/D− ion source
Vacuum ultraviolet (VUV) emission diagnostics for studying differences of electron impact processes in hydrogen and deuterium plasmas are presented. The method is applied to study a filament driven multicusp arc discharge negative ion source by comparing the VUV-emission intensities of different emission bands and extracted currents of H−/D− ions and electrons. It was found that the ratio of coextracted electrons to extracted ions is four times higher for deuterium than for hydrogen. No significant differences of the VUV-spectra or volumetric rates of ionization, excitation, production of high vibrational states, and dissociation were found between the plasmas of the two isotopes. The volum…
The role of seed electrons on the plasma breakdown and preglow of electron cyclotron resonance ion source
The 14 GHz Electron Cyclotron Resonance Ion Source at University of Jyväskylä, Department of Physics (JYFL) has been operated in pulsed mode in order to study the plasma breakdown and preglow effect. It was observed that the plasma breakdown time and preglow characteristics are affected by seed electrons provided by a continuous low power microwave signal at secondary frequency. Sustaining low density plasma during the off-period of high power microwave pulses at the primary frequency shifts the charge state distribution of the preglow transient toward higher charge states. This could be exploited for applications requiring fast and efficient ionization of radioactive elements as proposed f…
A Low Energy H- Beamline for the ALPHA Antihydrogen Experiment
Abstract The CERN ALPHA experiment makes precision measurements of antihydrogen atoms, confined in a superconducting magnetic minimum trap. Recent measurements of the antihydrogen spectrum have already provided high-resolution tests of fundamental symmetries, and ALPHA has now embarked on an ambitious upgrade programme aimed at directly comparing hydrogen and antihydrogen within their existing atom trap. One aspect of this upgrade will be the development of a low-energy (50 eV) hydrogen ion source that is compatible with ALPHA’s existing magnetic charged particle beamlines. PELLIS, previously developed at JYFL, is a 5 keV filament-driven source that generates H- beams with low emittances an…
The effect of rf pulse pattern on bremsstrahlung and ion current time evolution of an ECRIS.
Time-resolved helium ion production and bremsstrahlung emission from JYFL 14 GHz ECRIS is presented with different radio frequency pulse lengths. rf on times are varied from 5 to 50 ms and rf off times from 10 to 1000 ms between different measurement sets. It is observed that the plasma breakdown occurs a few milliseconds after launching the rf power into the plasma chamber, and in the beginning of the rf pulses a preglow transient is seen. During this transient the ion beam currents are increased by several factors compared to a steady state situation. By adjusting the rf pulse separation the maximum ion beam currents can be maintained during the so-called preglow regime while the amount o…
Diagnostics of highly charged plasmas with multicomponent 1+ ion injection
We establish multicomponent 1+ injection into a charge breeder electron cyclotron resonance ion source and an associated computational procedure as a noninvasive probe of the electron density ne, average electron energy ⟨Ee⟩, and the characteristic times of ionization, charge exchange, and ion confinement of stochastically heated, highly charged plasma. Multicomponent injection allows refining the ne, ⟨Ee⟩ ranges, reducing experimental uncertainty. Na/K injection is presented as a demonstration. The ⟨Ee⟩ and ne of a hydrogen discharge are found to be 600+600−300eV and 8+8−3×1011cm−3, respectively. The ionization, charge exchange, and confinement times of high charge state alkali ions are on…